論文の概要: Exploring the Vulnerability of the Content Moderation Guardrail in Large Language Models via Intent Manipulation
- arxiv url: http://arxiv.org/abs/2505.18556v1
- Date: Sat, 24 May 2025 06:47:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.50539
- Title: Exploring the Vulnerability of the Content Moderation Guardrail in Large Language Models via Intent Manipulation
- Title(参考訳): インテント操作による大規模言語モデルにおけるコンテンツモデレーションガードレールの脆弱性探索
- Authors: Jun Zhuang, Haibo Jin, Ye Zhang, Zhengjian Kang, Wenbin Zhang, Gaby G. Dagher, Haohan Wang,
- Abstract要約: 本研究では,意図認識型ガードレールの脆弱性を調査し,大規模言語モデルが暗黙の意図検出能力を示すことを示す。
IntentPromptという2段階のインテントベースのプロンプトリファインメントフレームワークを提案し、まず有害な問い合わせを構造化されたアウトラインに変換し、さらに宣言的なスタイルの物語に再構成する。
われわれのフレームワークは、最先端のジェイルブレイク手法を一貫して上回り、さらに高度なIntent Analysis(IA)とChain-of-Thought(CoT)ベースの防御を回避している。
- 参考スコア(独自算出の注目度): 18.37303422539757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intent detection, a core component of natural language understanding, has considerably evolved as a crucial mechanism in safeguarding large language models (LLMs). While prior work has applied intent detection to enhance LLMs' moderation guardrails, showing a significant success against content-level jailbreaks, the robustness of these intent-aware guardrails under malicious manipulations remains under-explored. In this work, we investigate the vulnerability of intent-aware guardrails and demonstrate that LLMs exhibit implicit intent detection capabilities. We propose a two-stage intent-based prompt-refinement framework, IntentPrompt, that first transforms harmful inquiries into structured outlines and further reframes them into declarative-style narratives by iteratively optimizing prompts via feedback loops to enhance jailbreak success for red-teaming purposes. Extensive experiments across four public benchmarks and various black-box LLMs indicate that our framework consistently outperforms several cutting-edge jailbreak methods and evades even advanced Intent Analysis (IA) and Chain-of-Thought (CoT)-based defenses. Specifically, our "FSTR+SPIN" variant achieves attack success rates ranging from 88.25% to 96.54% against CoT-based defenses on the o1 model, and from 86.75% to 97.12% on the GPT-4o model under IA-based defenses. These findings highlight a critical weakness in LLMs' safety mechanisms and suggest that intent manipulation poses a growing challenge to content moderation guardrails.
- Abstract(参考訳): Intent Detectionは、自然言語理解のコアコンポーネントであり、大規模言語モデル(LLM)を保護する上で重要なメカニズムとして大きく進化してきた。
以前の研究では、LLMのモデレーションガードレールの強化に意図検出を適用しており、コンテンツレベルのジェイルブレイクに対して大きな成功を収めたものの、悪意のある操作下でのこれらの意図認識ガードレールの堅牢性は未調査のままである。
本研究では,意図認識型ガードレールの脆弱性を調査し,LLMが暗黙的な意図検出能力を示すことを示す。
IntentPromptは、まず有害な問い合わせを構造化されたアウトラインに変換し、さらにフィードバックループによるプロンプトを反復的に最適化して宣言的スタイルの物語に変換する。
4つの公開ベンチマークと様々なブラックボックス LLM による大規模な実験は、我々のフレームワークがいくつかの最先端のジェイルブレイク手法を一貫して上回り、さらに高度なIntent Analysis (IA) とChain-of-Thought (CoT) ベースの防御を回避していることを示している。
具体的には、当社のFSTR+SPINは、o1モデルのCoTベースの防御に対して88.25%から96.54%、IAベースの防御下でのGPT-4oモデルの86.75%から97.12%の攻撃成功率を達成する。
これらの知見はLLMの安全性メカニズムの重大な弱点を浮き彫りにして、意図的な操作がコンテンツモデレーションガードレールへの挑戦を増大させていることを示唆している。
関連論文リスト
- Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversationは、新しいマルチターンジェイルブレイクフレームワークである。
有害なクエリを良心的な推論タスクに再構成する。
RACEは,複雑な会話シナリオにおいて,最先端攻撃の有効性を実現する。
論文 参考訳(メタデータ) (2025-02-16T09:27:44Z) - Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions [51.51850981481236]
非倫理的反応を引き起こすために、対照的な推論を利用する新しいジェイルブレイク手法であるPOATEを導入する。
PoATEは意味論的に意図に反し、敵のテンプレートと統合し、有害なアウトプットを驚くほど微妙に操る。
これに対応するために、悪意のある意図と理性を検出するためにクエリを分解して、有害な応答を評価し、拒否するIntent-Aware CoTとReverse Thinking CoTを提案する。
論文 参考訳(メタデータ) (2025-01-03T15:40:03Z) - PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach [25.31933913962953]
大規模言語モデル(LLM)が広く普及し、セキュリティに対する懸念が高まっている。
そこで我々は,迷路から逃れるネズミのゲームに触発された新しいブラックボックスジェイルブレイク手法PathSeekerを紹介した。
提案手法は,13の商用およびオープンソース LLM を対象としたテストにおいて,最先端の攻撃技術として5つの性能を発揮した。
論文 参考訳(メタデータ) (2024-09-21T15:36:26Z) - AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs [34.221522224051846]
大規模言語モデル(LLM)に対するジェイルブレイク攻撃を適応的に行うための適応的位置補充型ジェイルブレイク攻撃手法を提案する。
提案手法は,提案モデルの命令追従能力を利用して,まず安全なコンテンツを出力し,次にその物語シフト能力を利用して有害なコンテンツを生成する。
本手法は,従来の手法と比較して,広く認識されているセキュアモデル(Llama2)において,攻撃成功率を47%向上させることができる。
論文 参考訳(メタデータ) (2024-09-11T00:00:58Z) - LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models [20.154877919740322]
既存のjailbreakメソッドには、複雑なプロンプトエンジニアリングと反復最適化の2つの大きな制限がある。
本稿では,LLMの高度な推論能力を活用し,有害コンテンツを自律的に生成する効率的なジェイルブレイク攻撃手法であるAnalyzing-based Jailbreak(ABJ)を提案する。
論文 参考訳(メタデータ) (2024-07-23T06:14:41Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
本稿では,ObscurePrompt for jailbreaking LLMを紹介し,OOD(Out-of-Distribution)データにおける脆弱なアライメントに着想を得た。
まず、脱獄過程における決定境界を定式化し、次にLLMの倫理的決定境界に不明瞭な文章がどう影響するかを考察する。
本手法は,2つの防御機構に対する有効性を保ちながら,攻撃効果の観点から従来の手法を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-19T16:09:58Z) - JailGuard: A Universal Detection Framework for LLM Prompt-based Attacks [34.95274579737075]
JailGuardは、テキストおよび画像モダリティ間のプロンプトベースの攻撃を普遍的に検出するフレームワークである。
攻撃は本来、良心的な攻撃よりも頑丈ではないという原則に基づいて行われる。
テキストと画像の入力で86.14%/82.90%の最高の検出精度を達成し、最先端の手法を11.81%-25.73%、12.20%-21.40%向上させた。
論文 参考訳(メタデータ) (2023-12-17T17:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。