論文の概要: PRISM: Programmatic Reasoning with Image Sequence Manipulation for LVLM Jailbreaking
- arxiv url: http://arxiv.org/abs/2507.21540v1
- Date: Tue, 29 Jul 2025 07:13:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:55.846497
- Title: PRISM: Programmatic Reasoning with Image Sequence Manipulation for LVLM Jailbreaking
- Title(参考訳): PRISM:LVLM脱獄のための画像シーケンス操作によるプログラム推論
- Authors: Quanchen Zou, Zonghao Ying, Moyang Chen, Wenzhuo Xu, Yisong Xiao, Yakai Li, Deyue Zhang, Dongdong Yang, Zhao Liu, Xiangzheng Zhang,
- Abstract要約: 本稿では、ソフトウェアセキュリティからROP(Return-Oriented Programming)技術にインスパイアされた、新しい効果的なジェイルブレイクフレームワークを提案する。
提案手法では,有害な指示を視覚ガジェットの系列に分解する。
以上の結果から,LVLMの構成的推論能力を利用した,重要かつ過小評価された脆弱性が判明した。
- 参考スコア(独自算出の注目度): 3.718606661938873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing sophistication of large vision-language models (LVLMs) has been accompanied by advances in safety alignment mechanisms designed to prevent harmful content generation. However, these defenses remain vulnerable to sophisticated adversarial attacks. Existing jailbreak methods typically rely on direct and semantically explicit prompts, overlooking subtle vulnerabilities in how LVLMs compose information over multiple reasoning steps. In this paper, we propose a novel and effective jailbreak framework inspired by Return-Oriented Programming (ROP) techniques from software security. Our approach decomposes a harmful instruction into a sequence of individually benign visual gadgets. A carefully engineered textual prompt directs the sequence of inputs, prompting the model to integrate the benign visual gadgets through its reasoning process to produce a coherent and harmful output. This makes the malicious intent emergent and difficult to detect from any single component. We validate our method through extensive experiments on established benchmarks including SafeBench and MM-SafetyBench, targeting popular LVLMs. Results show that our approach consistently and substantially outperforms existing baselines on state-of-the-art models, achieving near-perfect attack success rates (over 0.90 on SafeBench) and improving ASR by up to 0.39. Our findings reveal a critical and underexplored vulnerability that exploits the compositional reasoning abilities of LVLMs, highlighting the urgent need for defenses that secure the entire reasoning process.
- Abstract(参考訳): 大規模視覚言語モデル(LVLM)の高度化には、有害なコンテンツ生成を防ぐために設計された安全アライメント機構の進歩が伴っている。
しかし、これらの防御は高度な敵の攻撃に弱いままである。
既存のjailbreakメソッドは通常、直接的かつ意味的に明示的なプロンプトに依存しており、LVLMが複数の推論ステップで情報を構成する方法の微妙な脆弱性を見落としている。
本稿では,ソフトウェアセキュリティのReturn-Oriented Programming(ROP)技術に触発された,新しい効果的なジェイルブレイクフレームワークを提案する。
提案手法では,有害な指示を視覚ガジェットの系列に分解する。
慎重に設計されたテキストプロンプトが入力のシーケンスを指示し、その推論プロセスを通じて良質な視覚ガジェットを統合することによって、一貫性があり有害な出力を生成する。
これにより、悪意のあるインテントが創発的になり、単一のコンポーネントから検出することが困難になる。
一般的なLVLMをターゲットとしたSafeBenchやMM-SafetyBenchなど,確立したベンチマークの広範な実験により,本手法の有効性を検証した。
その結果、我々のアプローチは、最先端モデルにおける既存のベースラインを一貫して大幅に上回り、ほぼ完璧な攻撃成功率(SafeBenchでは0.90以上)を達成し、ASRを最大0.39まで改善した。
以上の結果から,LVLMの構成的推論能力を利用した重要かつ過小評価された脆弱性が明らかとなった。
関連論文リスト
- The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs [39.85609149662187]
DLLMのユニークな安全性の弱点を生かした、最初の系統的な研究および脱獄攻撃フレームワークであるDIJAを提案する。
提案するDIJAは,dLLMのテキスト生成機構を利用した対向的インターリーブ・マスクテキストプロンプトを構築する。
本研究は, 新たな言語モデルにおいて, 安全アライメントの再考の必要性を浮き彫りにするものである。
論文 参考訳(メタデータ) (2025-07-15T08:44:46Z) - Exploring the Vulnerability of the Content Moderation Guardrail in Large Language Models via Intent Manipulation [18.37303422539757]
本研究では,意図認識型ガードレールの脆弱性を調査し,大規模言語モデルが暗黙の意図検出能力を示すことを示す。
IntentPromptという2段階のインテントベースのプロンプトリファインメントフレームワークを提案し、まず有害な問い合わせを構造化されたアウトラインに変換し、さらに宣言的なスタイルの物語に再構成する。
われわれのフレームワークは、最先端のジェイルブレイク手法を一貫して上回り、さらに高度なIntent Analysis(IA)とChain-of-Thought(CoT)ベースの防御を回避している。
論文 参考訳(メタデータ) (2025-05-24T06:47:32Z) - Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs [83.11815479874447]
本研究では,人間の認知における認知的分解と偏見に触発された新しいジェイルブレイク攻撃フレームワークを提案する。
我々は、悪意のあるプロンプトの複雑さと関連バイアスを減らし、認知的分解を用いて、プロンプトを再編成する。
また、従来の二分的成功または失敗のパラダイムを超越したランキングベースの有害度評価指標も導入する。
論文 参考訳(メタデータ) (2025-05-03T05:28:11Z) - Prefill-Based Jailbreak: A Novel Approach of Bypassing LLM Safety Boundary [2.4329261266984346]
LLM(Large Language Models)は、有用で安全なコンテンツを生成するように設計されている。
一般的にジェイルブレイクと呼ばれる 敵の攻撃は 安全プロトコルをバイパスできる
LLMのプリフィル機能を利用した新しいジェイルブレイク攻撃手法を提案する。
論文 参考訳(メタデータ) (2025-04-28T07:38:43Z) - AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models [0.0]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃の脆弱性を示し続けている。
本稿では,敵対的即時生成を自動化する新しいフレームワークであるAutoAdvを紹介する。
我々の攻撃は、有害なコンテンツ生成に対して最大86%のジェイルブレイク成功率を達成したことを示す。
論文 参考訳(メタデータ) (2025-04-18T08:38:56Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
本稿では,テキストと視覚のプロンプトを協調的に最適化することにより,ジェイルブレイクを実行するバイモーダル・アドバイサル・プロンプト・アタック(BAP)を提案する。
特に,大規模言語モデルを用いてジェイルブレイクの失敗を分析し,テキストのプロンプトを洗練させるために連鎖推論を採用する。
論文 参考訳(メタデータ) (2024-06-06T13:00:42Z) - Fight Back Against Jailbreaking via Prompt Adversarial Tuning [23.55544992740663]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃の影響を受けやすい。
本稿では,ユーザプロンプトに付随するプロンプト制御をガードプレフィックスとしてトレーニングする,PAT(Prompt Adversarial Tuning)というアプローチを提案する。
本手法は, グレーボックス攻撃とブラックボックス攻撃の両方に対して有効であり, 先進攻撃の成功率を0%に低下させる。
論文 参考訳(メタデータ) (2024-02-09T09:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。