Autocomp: LLM-Driven Code Optimization for Tensor Accelerators
- URL: http://arxiv.org/abs/2505.18574v3
- Date: Mon, 21 Jul 2025 19:49:14 GMT
- Title: Autocomp: LLM-Driven Code Optimization for Tensor Accelerators
- Authors: Charles Hong, Sahil Bhatia, Alvin Cheung, Yakun Sophia Shao,
- Abstract summary: Autocomp is an approach that empowers accelerator programmers to leverage domain knowledge and hardware feedback to optimize code.<n>We demonstrate that Autocomp-optimized code runs 5.6x (GEMM) and 2.7x (convolution) faster than the vendor-provided library.
- Score: 7.384883165968798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hardware accelerators, especially those designed for tensor processing, have become ubiquitous in today's computing landscape. However, even with significant efforts in building compilers, programming these tensor accelerators remains challenging, leaving much of their potential underutilized. Recently, large language models (LLMs), trained on large amounts of code, have shown significant promise in code generation and optimization tasks, but generating low-resource languages like specialized tensor accelerator code still poses a significant challenge. We tackle this challenge with Autocomp, an approach that empowers accelerator programmers to leverage domain knowledge and hardware feedback to optimize code via an automated LLM-driven search. We accomplish this by: 1) formulating each optimization pass as a structured two-phase prompt, divided into planning and code generation phases, 2) inserting domain knowledge during planning via a concise and adaptable optimization menu, and 3) integrating correctness and performance metrics from hardware as feedback at each search iteration. Across three categories of representative workloads and two different accelerators, we demonstrate that Autocomp-optimized code runs 5.6x (GEMM) and 2.7x (convolution) faster than the vendor-provided library, and outperforms expert-level hand-tuned code by 1.4x (GEMM), 1.1x (convolution), and 1.3x (fine-grained linear algebra). Additionally, we demonstrate that optimization schedules generated from Autocomp can be reused across similar tensor operations, improving speedups by up to 24% under a fixed sample budget.
Related papers
- Optimizing Code Runtime Performance through Context-Aware Retrieval-Augmented Generation [8.574686422653345]
Auto achieves a 7.3% improvement in execution efficiency over GPT-4o across common generated executable code.<n>This study introduces an in-context learning approach designed to bridge the gap by enabling LLMs to automatically generate optimized code.
arXiv Detail & Related papers (2025-01-28T04:00:35Z) - LLM-Aided Compilation for Tensor Accelerators [6.709490736813537]
We discuss how large language models (LLMs) could be leveraged to build a compiler for hardware accelerators.
Specifically, we demonstrate the ability of GPT-4 to achieve high pass rates in translating code to the Gemmini accelerator.
We also propose a 2-phase workflow for utilizing LLMs to generate hardware-optimized code.
arXiv Detail & Related papers (2024-08-06T19:10:25Z) - Should AI Optimize Your Code? A Comparative Study of Classical Optimizing Compilers Versus Current Large Language Models [0.0]
Large Language Models (LLMs) raise intriguing questions about the potential of these AI approaches to revolutionize code optimization.<n>This work aims to answer an essential question for the compiler community: "Can AI-driven models revolutionize the way we approach code optimization?"<n>We present a comparative analysis between three classical optimizing compilers and two recent large language models.
arXiv Detail & Related papers (2024-06-17T23:26:41Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
Auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in their hardware performance.
We propose a novel parallel prompt decoding that requires only $0.0002$% trainable parameters, enabling efficient training on a single A100-40GB GPU in just 16 hours.
Our approach demonstrates up to 2.49$times$ speedup and maintains a minimal memory overhead of just $0.0004$%.
arXiv Detail & Related papers (2024-05-28T22:19:30Z) - Performance-Aligned LLMs for Generating Fast Code [2.180216161965907]
We introduce a reinforcement learning based methodology to align the outputs of code LLMs with performance.
We demonstrate that our fine-tuned model improves the expected speedup of generated code over base models for a set of benchmark tasks.
arXiv Detail & Related papers (2024-04-29T16:52:38Z) - CompilerDream: Learning a Compiler World Model for General Code Optimization [58.87557583347996]
We introduce CompilerDream, a model-based reinforcement learning approach to general code optimization.
It comprises a compiler world model that accurately simulates the intrinsic properties of optimization passes and an agent trained on this model to produce effective optimization strategies.
It excels across diverse datasets, surpassing LLVM's built-in optimizations and other state-of-the-art methods in both settings of value prediction and end-to-end code optimization.
arXiv Detail & Related papers (2024-04-24T09:20:33Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
Our algorithm, called AQLM, generalizes the classic Additive Quantization (AQ) approach for information retrieval.
We provide fast GPU and CPU implementations of AQLM for token generation, which enable us to match or outperform optimized FP16 implementations for speed.
arXiv Detail & Related papers (2024-01-11T18:54:44Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
Performance embeddings enable knowledge transfer of performance tuning between applications.
We demonstrate this transfer tuning approach on case studies in deep neural networks, dense and sparse linear algebra compositions, and numerical weather prediction stencils.
arXiv Detail & Related papers (2023-03-14T15:51:35Z) - M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast
Self-Adaptation [145.7321032755538]
Learning to Optimize (L2O) has drawn increasing attention as it often remarkably accelerates the optimization procedure of complex tasks.
This paper investigates a potential solution to this open challenge by meta-training an L2O that can perform fast test-time self-adaptation to an out-of-distribution task.
arXiv Detail & Related papers (2023-02-28T19:23:20Z) - Learning Performance-Improving Code Edits [107.21538852090208]
We introduce a framework for adapting large language models (LLMs) to high-level program optimization.
First, we curate a dataset of performance-improving edits made by human programmers of over 77,000 competitive C++ programming submission pairs.
For prompting, we propose retrieval-based few-shot prompting and chain-of-thought, and for finetuning, these include performance-conditioned generation and synthetic data augmentation based on self-play.
arXiv Detail & Related papers (2023-02-15T18:59:21Z) - Woodpecker-DL: Accelerating Deep Neural Networks via Hardware-Aware
Multifaceted Optimizations [15.659251804042748]
Woodpecker-DL (WPK) is a hardware-aware deep learning framework.
WPK uses graph optimization, automated searches, domain-specific language ( DSL) and system-level exploration to accelerate inference.
We show that on a maximum P100 GPU, we can achieve the speedup of 5.40 over cuDNN and 1.63 over TVM on individual operators, and run up to 1.18 times faster than TeslaRT for end-to-end model inference.
arXiv Detail & Related papers (2020-08-11T07:50:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.