ThanoRA: Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation
- URL: http://arxiv.org/abs/2505.18640v1
- Date: Sat, 24 May 2025 11:01:45 GMT
- Title: ThanoRA: Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation
- Authors: Jian Liang, Wenke Huang, Xianda Guo, Guancheng Wan, Bo Du, Mang Ye,
- Abstract summary: Low-Rank Adaptation (LoRA) is widely adopted for downstream fine-tuning of foundation models.<n>We propose ThanoRA, a Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation framework.
- Score: 73.18867725540865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Rank Adaptation (LoRA) is widely adopted for downstream fine-tuning of foundation models due to its efficiency and zero additional inference cost. Many real-world applications require foundation models to specialize in multiple tasks simultaneously, motivating the need for efficient multi-task adaptation. While recent approaches integrate LoRA with mixture-of-experts (MoE) to address this, the use of routers prevents parameter mergeability, which increases inference overhead and hinders unified multi-task adaptation, thereby limiting deployment practicality. In this work, we propose ThanoRA, a Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation framework that enables multi-task adaptation while preserving the inference efficiency of LoRA. ThanoRA jointly models task heterogeneity and mitigates subspace interference throughout training. Specifically, motivated by inherent differences in complexity and heterogeneity across tasks, ThanoRA constructs task-specific LoRA subspaces at initialization, enabling fine-grained knowledge injection aligned with task heterogeneity. Furthermore, to prevent task interference and subspace collapse during multi-task training, ThanoRA introduces a subspace-preserving regularization that maintains the independence of task-specific representations. With the synergy of both components, ThanoRA enables efficient and unified multi-task adaptation. Extensive experiments across multimodal and text-only benchmarks under varying multi-task mixtures demonstrate that ThanoRA consistently achieves robust and superior performance over strong baselines without introducing additional inference overhead. Our code is publicly available at: https://github.com/LiangJian24/ThanoRA.
Related papers
- Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning [20.31474646915225]
We show that a simplified multi-head architecture with high inter-head similarity outperforms complex multi-adapter and multi-head systems.<n>We propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space.
arXiv Detail & Related papers (2025-08-07T07:02:55Z) - MoRE: A Mixture of Low-Rank Experts for Adaptive Multi-Task Learning [18.0412262027514]
We propose a novel Mixture of Low-Rank Experts (MoRE) for multi-task.<n>Instead of using an individual LoRA for each task, we align different ranks of LoRA module with different tasks.<n>We also design a novel adaptive rank selector to select the appropriate expert for each task.
arXiv Detail & Related papers (2025-05-28T12:32:09Z) - Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning [53.98941571078398]
Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity.<n>Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules.<n>While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks.<n>We propose Single-ranked Mixture of Experts LoRA (textbfSMoRA), which embeds MoE into LoRA by textittreating each rank as an
arXiv Detail & Related papers (2025-01-25T06:56:39Z) - Task-Aware Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [70.96345405979179]
The purpose of offline multi-task reinforcement learning (MTRL) is to develop a unified policy applicable to diverse tasks without the need for online environmental interaction.
variations in task content and complexity pose significant challenges in policy formulation.
We introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task.
arXiv Detail & Related papers (2024-11-02T05:49:14Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing MTL capabilities.<n> MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information and capture shared knowledge.<n>This approach enables pre-trained models to jointly adapt to different target domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - MoDE: Effective Multi-task Parameter Efficient Fine-Tuning with a Mixture of Dyadic Experts [6.245113492272563]
Mixture of Dyadic Experts (MoDE) is a novel design for efficient multi-task adaptation.
Our design allows for more fine-grained mixing, thereby increasing the model's ability to jointly handle multiple tasks.
arXiv Detail & Related papers (2024-08-02T18:05:10Z) - BoRA: Bayesian Hierarchical Low-Rank Adaption for Multi-Task Large Language Models [0.0]
This paper introduces Bayesian Hierarchical Low-Rank Adaption (BoRA), a novel method for finetuning multi-task Large Language Models (LLMs)<n>BoRA addresses trade-offs by leveraging a Bayesian hierarchical model that allows tasks to share information through global hierarchical priors.<n>Our experimental results show that BoRA outperforms both individual and unified model approaches, achieving lower perplexity and better generalization across tasks.
arXiv Detail & Related papers (2024-07-08T06:38:50Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [51.58020580970644]
This paper introduces a novel approach that integrates multimodal instruction tuning with Low-Rank Adaption (LoRA)<n>It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance.<n> Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks.
arXiv Detail & Related papers (2024-02-24T20:15:31Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
We propose a novel framework for learning dynamic subtask assignment (LDSA) in cooperative MARL.
To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy.
We show that LDSA learns reasonable and effective subtask assignment for better collaboration.
arXiv Detail & Related papers (2022-05-05T10:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.