論文の概要: GraSS: Scalable Influence Function with Sparse Gradient Compression
- arxiv url: http://arxiv.org/abs/2505.18976v1
- Date: Sun, 25 May 2025 04:58:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.804101
- Title: GraSS: Scalable Influence Function with Sparse Gradient Compression
- Title(参考訳): GraSS: 疎勾配圧縮によるスケーラブルな影響関数
- Authors: Pingbang Hu, Joseph Melkonian, Weijing Tang, Han Zhao, Jiaqi W. Ma,
- Abstract要約: インフルエンス関数のような勾配に基づくデータ帰属法は、反復的なモデル再訓練を必要とせず、個々のトレーニングサンプルの影響を理解するために重要である。
線形層に対する新しい勾配圧縮アルゴリズムであるGraSSと、その変種であるFactGraSSは、サブ線形空間と時間複雑性を達成するために、サンプル単位の勾配の本質的な空間性を利用する。
特に、FactGraSSは、これまでの最先端ベースラインと比較して、数十億規模のモデルで最大165%のスループットを実現している。
- 参考スコア(独自算出の注目度): 7.276278712124403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gradient-based data attribution methods, such as influence functions, are critical for understanding the impact of individual training samples without requiring repeated model retraining. However, their scalability is often limited by the high computational and memory costs associated with per-sample gradient computation. In this work, we propose GraSS, a novel gradient compression algorithm and its variants FactGraSS for linear layers specifically, that explicitly leverage the inherent sparsity of per-sample gradients to achieve sub-linear space and time complexity. Extensive experiments demonstrate the effectiveness of our approach, achieving substantial speedups while preserving data influence fidelity. In particular, FactGraSS achieves up to 165% faster throughput on billion-scale models compared to the previous state-of-the-art baselines. Our code is publicly available at https://github.com/TRAIS-Lab/GraSS.
- Abstract(参考訳): 影響関数のようなグラディエントに基づくデータ帰属法は、反復的なモデル再訓練を必要とせず、個別のトレーニングサンプルの影響を理解するために重要である。
しかし、そのスケーラビリティは、サンプルごとの勾配計算に関連する高い計算コストとメモリコストによって制限されることが多い。
本研究では,線形層に対する新しい勾配圧縮アルゴリズムであるGraSSとその変種であるFactGraSSを提案する。
本手法の有効性を実証し, データの信頼性を保ちながら, 大幅な高速化を実現した。
特に、FactGraSSは、これまでの最先端ベースラインと比較して、数十億規模のモデルで最大165%のスループットを実現している。
私たちのコードはhttps://github.com/TRAIS-Lab/GraSS.comで公開されています。
関連論文リスト
- Linearly Convergent Mixup Learning [0.0]
より広い範囲のバイナリ分類モデルに拡張する2つの新しいアルゴリズムを提案する。
勾配に基づくアプローチとは異なり、我々のアルゴリズムは学習率のようなハイパーパラメータを必要とせず、実装と最適化を単純化する。
我々のアルゴリズムは、降下勾配法と比較して最適解への高速収束を実現し、ミックスアップデータの増大は、様々な損失関数の予測性能を一貫して改善する。
論文 参考訳(メタデータ) (2025-01-14T02:33:40Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models [56.00251589760559]
大型言語モデル(LLM)はゼロショット設定でグラデーション先行として振る舞うことができる。
本稿では,LSMと算術符号を統合する新しい手法であるLM-GCを紹介する。
実験により、LM-GCは既存の最先端のロスレス圧縮手法を超越していることが示された。
論文 参考訳(メタデータ) (2024-09-26T13:38:33Z) - R-CONV: An Analytical Approach for Efficient Data Reconstruction via Convolutional Gradients [40.209183669098735]
本稿では,畳み込み層の勾配を効率的に利用するための高度なデータ漏洩手法を提案する。
我々の知る限りでは、これは勾配から直接畳み込み層の入力を再構築する最初の分析手法である。
論文 参考訳(メタデータ) (2024-06-06T16:28:04Z) - Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
既存のデータセットプルーニングメソッドでは、データセット全体のトレーニングが必要になる。
本稿では、DLC(Distorting-based Learning Complexity)という、単純で、新規で、トレーニング不要な難易度スコアを提案する。
本手法は,より高速に学習できるサンプルを少ないパラメータで学習できるという観察結果に動機付けられている。
論文 参考訳(メタデータ) (2024-02-08T02:29:33Z) - Online Importance Sampling for Stochastic Gradient Optimization [33.42221341526944]
本稿では,トレーニング中のデータの重要度を効率的に計算する実用的なアルゴリズムを提案する。
また、ネットワーク出力の損失w.r.t.の導出に基づく新しいメトリクスを導入し、ミニバッチの重要度サンプリング用に設計した。
論文 参考訳(メタデータ) (2023-11-24T13:21:35Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
GAN(Generative Adversarial Networks)は通常、限られたトレーニングデータが利用できる場合、過度に適合する。
ScoreMixは、様々な画像合成タスクのための、新しくスケーラブルなデータ拡張手法である。
論文 参考訳(メタデータ) (2022-10-27T02:55:15Z) - Condensing Graphs via One-Step Gradient Matching [50.07587238142548]
ネットワーク重みを訓練せずに1ステップのみの勾配マッチングを行う1ステップ勾配マッチング方式を提案する。
我々の理論的分析は、この戦略が実際のグラフの分類損失を減少させる合成グラフを生成することができることを示している。
特に、元のパフォーマンスの最大98%を近似しながら、データセットサイズを90%削減することが可能です。
論文 参考訳(メタデータ) (2022-06-15T18:20:01Z) - Wyner-Ziv Gradient Compression for Federated Learning [4.619828919345114]
グラディエント圧縮は, 圧縮勾配を伝送することで通信負荷を低減する効果的な方法である。
本稿では、歴史的勾配を用いて勾配を圧縮するフェデレート学習のための実用的な勾配圧縮手法を提案する。
また、実際のデータセットに勾配量子化法を実装し、提案手法の性能は従来の手法よりも優れている。
論文 参考訳(メタデータ) (2021-11-16T07:55:43Z) - Sparse Communication for Training Deep Networks [56.441077560085475]
同期勾配降下(SGD)は、ディープラーニングモデルの分散トレーニングに最もよく用いられる手法である。
このアルゴリズムでは、各ワーカーは他のワーカーと局所勾配を共有し、すべてのワーカーの平均勾配を使ってパラメータを更新する。
いくつかの圧縮スキームについて検討し、3つの重要なパラメータが性能に与える影響を同定する。
論文 参考訳(メタデータ) (2020-09-19T17:28:11Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。