Automatic and Structure-Aware Sparsification of Hybrid Neural ODEs
- URL: http://arxiv.org/abs/2505.18996v1
- Date: Sun, 25 May 2025 06:36:30 GMT
- Title: Automatic and Structure-Aware Sparsification of Hybrid Neural ODEs
- Authors: Bob Junyi Zou, Lu Tian,
- Abstract summary: We propose a new pipeline for automatic state selection and structure optimization in mechanistic neural ODEs.<n>Experiments on synthetic and real-world data show improved predictive performance and robustness with desired sparsity.
- Score: 7.240170769827935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid neural ordinary differential equations (neural ODEs) integrate mechanistic models with neural ODEs, offering strong inductive bias and flexibility, and are particularly advantageous in data-scarce healthcare settings. However, excessive latent states and interactions from mechanistic models can lead to training inefficiency and over-fitting, limiting practical effectiveness of hybrid neural ODEs. In response, we propose a new hybrid pipeline for automatic state selection and structure optimization in mechanistic neural ODEs, combining domain-informed graph modifications with data-driven regularization to sparsify the model for improving predictive performance and stability while retaining mechanistic plausibility. Experiments on synthetic and real-world data show improved predictive performance and robustness with desired sparsity, establishing an effective solution for hybrid model reduction in healthcare applications.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
A new knowledge-based and machine learning hybrid modeling approach, called conditional neural differential equation (CGNSDE), is developed.
In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems.
arXiv Detail & Related papers (2024-04-10T05:32:03Z) - Hybrid$^2$ Neural ODE Causal Modeling and an Application to Glycemic Response [5.754225700181611]
We show how to achieve a win-win, state-of-the-art predictive performance emphand causal validity.
We demonstrate our ability to achieve a win-win, state-of-the-art predictive performance emphand causal validity in the challenging task of modeling glucose dynamics post-exercise in individuals with type 1 diabetes.
arXiv Detail & Related papers (2024-02-27T06:01:56Z) - A Self-Adaptive Penalty Method for Integrating Prior Knowledge
Constraints into Neural ODEs [3.072340427031969]
We propose a self-adaptive penalty algorithm for Neural ODEs to enable modelling of constrained natural systems.
We validate the proposed approach by modelling three natural systems with prior knowledge constraints.
The self-adaptive penalty approach provides more accurate and robust models with reliable and meaningful predictions.
arXiv Detail & Related papers (2023-07-27T15:32:02Z) - Improving Surrogate Model Robustness to Perturbations for Dynamical Systems Through Machine Learning and Data Assimilation [0.0789257770465417]
We propose a novel framework that combines machine learning and data assimilation techniques to improve surrogate models.<n>We demonstrate that our framework substantially improves the accuracy of surrogate models under input perturbations.
arXiv Detail & Related papers (2023-07-19T05:45:05Z) - Gibbs-Duhem-Informed Neural Networks for Binary Activity Coefficient
Prediction [45.84205238554709]
We propose Gibbs-Duhem-informed neural networks for the prediction of binary activity coefficients at varying compositions.
We include the Gibbs-Duhem equation explicitly in the loss function for training neural networks.
arXiv Detail & Related papers (2023-05-31T07:36:45Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Standalone Neural ODEs with Sensitivity Analysis [5.565364597145569]
This paper presents a continuous-depth neural ODE model capable of describing a full deep neural network.
We present a general formulation of the neural sensitivity problem and show how it is used in the NCG training.
Our evaluations demonstrate that our novel formulations lead to increased robustness and performance as compared to ResNet models.
arXiv Detail & Related papers (2022-05-27T12:16:53Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.