Veta-GS: View-dependent deformable 3D Gaussian Splatting for thermal infrared Novel-view Synthesis
- URL: http://arxiv.org/abs/2505.19138v1
- Date: Sun, 25 May 2025 13:20:45 GMT
- Title: Veta-GS: View-dependent deformable 3D Gaussian Splatting for thermal infrared Novel-view Synthesis
- Authors: Myeongseok Nam, Wongi Park, Minsol Kim, Hyejin Hur, Soomok Lee,
- Abstract summary: 3D Gaussian Splatting (3D-GS) based on Thermal Infrared (TIR) imaging has gained attention in novel-view synthesis.<n>We introduce Veta-GS, which leverages a view-dependent deformation field and a Thermal Feature Extractor to capture subtle thermal variations.<n>Our method achieves better performance over existing methods.
- Score: 3.1457219084519004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, 3D Gaussian Splatting (3D-GS) based on Thermal Infrared (TIR) imaging has gained attention in novel-view synthesis, showing real-time rendering. However, novel-view synthesis with thermal infrared images suffers from transmission effects, emissivity, and low resolution, leading to floaters and blur effects in rendered images. To address these problems, we introduce Veta-GS, which leverages a view-dependent deformation field and a Thermal Feature Extractor (TFE) to precisely capture subtle thermal variations and maintain robustness. Specifically, we design view-dependent deformation field that leverages camera position and viewing direction, which capture thermal variations. Furthermore, we introduce the Thermal Feature Extractor (TFE) and MonoSSIM loss, which consider appearance, edge, and frequency to maintain robustness. Extensive experiments on the TI-NSD benchmark show that our method achieves better performance over existing methods.
Related papers
- EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - DifIISR: A Diffusion Model with Gradient Guidance for Infrared Image Super-Resolution [32.53713932204663]
DifIISR is an infrared image super-resolution diffusion model optimized for visual quality and perceptual performance.<n>We introduce an infrared thermal spectrum distribution regulation to preserve visual fidelity.<n>We incorporate various visual foundational models as the perceptual guidance for downstream visual tasks.
arXiv Detail & Related papers (2025-03-03T05:20:57Z) - Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
arXiv Detail & Related papers (2024-11-19T14:24:03Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - Thermal3D-GS: Physics-induced 3D Gaussians for Thermal Infrared Novel-view Synthesis [11.793425521298488]
This paper introduces a physics-induced 3D Gaussian splatting method named Thermal3D-GS.
The first large-scale benchmark dataset for this field named Thermal Infrared Novel-view Synthesis dataset (TI-NSD) is created.
The results indicate that our method outperforms the baseline method with a 3.03 dB improvement in PSNR.
arXiv Detail & Related papers (2024-09-12T13:46:53Z) - ThermalNeRF: Thermal Radiance Fields [32.881758519242155]
We propose a unified framework for scene reconstruction from a set of LWIR and RGB images.
We calibrate the RGB and infrared cameras with respect to each other, as a preprocessing step.
We show that our method is capable of thermal super-resolution, as well as visually removing obstacles to reveal objects occluded in either the RGB or thermal channels.
arXiv Detail & Related papers (2024-07-22T02:51:29Z) - Implicit Multi-Spectral Transformer: An Lightweight and Effective Visible to Infrared Image Translation Model [0.6817102408452475]
In computer vision, visible light images often exhibit low contrast in low-light conditions, presenting a significant challenge.
Recent advancements in deep learning, particularly the deployment of Generative Adversarial Networks (GANs), have facilitated the transformation of visible light images to infrared images.
We propose a novel end-to-end Transformer-based model that efficiently converts visible light images into high-fidelity infrared images.
arXiv Detail & Related papers (2024-04-10T15:02:26Z) - Simultaneous Face Hallucination and Translation for Thermal to Visible
Face Verification using Axial-GAN [74.22129648654783]
We introduce the task of thermal-to-visible face verification from low-resolution thermal images.
We propose Axial-Generative Adversarial Network (Axial-GAN) to synthesize high-resolution visible images for matching.
arXiv Detail & Related papers (2021-04-13T22:34:28Z) - A Large-Scale, Time-Synchronized Visible and Thermal Face Dataset [62.193924313292875]
We present the DEVCOM Army Research Laboratory Visible-Thermal Face dataset (ARL-VTF)
With over 500,000 images from 395 subjects, the ARL-VTF dataset represents to the best of our knowledge, the largest collection of paired visible and thermal face images to date.
This paper presents benchmark results and analysis on thermal face landmark detection and thermal-to-visible face verification by evaluating state-of-the-art models on the ARL-VTF dataset.
arXiv Detail & Related papers (2021-01-07T17:17:12Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.