Using Large Language Models to Assess Teachers' Pedagogical Content Knowledge
- URL: http://arxiv.org/abs/2505.19266v1
- Date: Sun, 25 May 2025 18:45:53 GMT
- Title: Using Large Language Models to Assess Teachers' Pedagogical Content Knowledge
- Authors: Yaxuan Yang, Shiyu Wang, Xiaoming Zhai,
- Abstract summary: This study examines whether large language models introduce construct-irrelevant variance (CIV) in ways similar to or different from machine learning (ML) and human raters.<n>Using generalized linear mixed models (GLMMs), we compared variance components and rater-level scoring patterns across three scoring sources.<n>Results indicate that scenario-level variance was minimal across tasks, while rater-related factors contributed substantially to CIV.
- Score: 3.2489371952043213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assessing teachers' pedagogical content knowledge (PCK) through performance-based tasks is both time and effort-consuming. While large language models (LLMs) offer new opportunities for efficient automatic scoring, little is known about whether LLMs introduce construct-irrelevant variance (CIV) in ways similar to or different from traditional machine learning (ML) and human raters. This study examines three sources of CIV -- scenario variability, rater severity, and rater sensitivity to scenario -- in the context of video-based constructed-response tasks targeting two PCK sub-constructs: analyzing student thinking and evaluating teacher responsiveness. Using generalized linear mixed models (GLMMs), we compared variance components and rater-level scoring patterns across three scoring sources: human raters, supervised ML, and LLM. Results indicate that scenario-level variance was minimal across tasks, while rater-related factors contributed substantially to CIV, especially in the more interpretive Task II. The ML model was the most severe and least sensitive rater, whereas the LLM was the most lenient. These findings suggest that the LLM contributes to scoring efficiency while also introducing CIV as human raters do, yet with varying levels of contribution compared to supervised ML. Implications for rater training, automated scoring design, and future research on model interpretability are discussed.
Related papers
- Can Reasoning Help Large Language Models Capture Human Annotator Disagreement? [84.32752330104775]
Variation in human annotation (i.e., disagreements) is common in NLP.<n>We evaluate the influence of different reasoning settings on Large Language Model disagreement modeling.<n>Surprisingly, our results show that RLVR-style reasoning degrades performance in disagreement modeling.
arXiv Detail & Related papers (2025-06-24T09:49:26Z) - Correlated Errors in Large Language Models [0.6856888934092934]
We find substantial correlation in model errors on a leaderboard dataset.<n>We identify factors driving model correlation, including shared architectures and providers.<n>We show the effects of correlation in two downstream tasks: LLM-as-judge evaluation and hiring.
arXiv Detail & Related papers (2025-06-09T17:37:18Z) - Mimicking or Reasoning: Rethinking Multi-Modal In-Context Learning in Vision-Language Models [19.361686225381447]
Vision-language models (VLMs) are widely assumed to exhibit in-context learning (ICL)<n>We propose a new MM-ICL with Reasoning pipeline that augments each demonstration with a generated rationale alongside the answer.
arXiv Detail & Related papers (2025-06-09T16:55:32Z) - Evaluating Explanations Through LLMs: Beyond Traditional User Studies [7.377398767507683]
We reproduce a user study comparing counterfactual and causal explanations, replicating human participants with seven Large Language Models (LLMs)
Our results show that (i) LLMs can replicate most conclusions from the original study, (ii) different LLMs yield varying levels of alignment in the results, and (iii) experimental factors such as LLM memory and output variability affect alignment with human responses.
arXiv Detail & Related papers (2024-10-23T11:31:52Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
This study aims to evaluate the performance of Multimodal Large Language Models (MLLMs) on the VALSE benchmark.
We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets.
arXiv Detail & Related papers (2024-07-17T11:26:47Z) - Analyzing Large Language Models for Classroom Discussion Assessment [0.8194411391152481]
We examine how the assessment performance of 2 large language models (LLMs) interacts with 3 factors that may affect performance: task formulation, context length, and few-shot examples.
Our results suggest that the 3 aforementioned factors do affect the performance of the tested LLMs and there is a relation between consistency and performance.
We recommend a LLM-based assessment approach that has a good balance in terms of predictive performance, computational efficiency, and consistency.
arXiv Detail & Related papers (2024-06-12T22:43:38Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.<n>The question of how reliable these evaluators are has emerged as a crucial research question.<n>We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
We show that Large Language Models (LLMs) are biased evaluators as they exhibit familiarity bias and show skewed distributions of ratings.
We also found that LLMs are inconsistent evaluators, showing low "inter-sample" agreement and sensitivity to prompt differences that are insignificant to human understanding of text quality.
arXiv Detail & Related papers (2024-05-02T20:42:28Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Knowledgeable In-Context Tuning: Exploring and Exploiting Factual Knowledge for In-Context Learning [37.22349652230841]
Large language models (LLMs) enable in-context learning (ICL) by conditioning on a few labeled training examples as a text-based prompt.
In this paper, we demonstrate that factual knowledge is imperative for the performance of ICL in three core facets.
We introduce a novel Knowledgeable In-Context Tuning (KICT) framework to further improve the performance of ICL.
arXiv Detail & Related papers (2023-09-26T09:06:39Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.