Can Reasoning Help Large Language Models Capture Human Annotator Disagreement?
- URL: http://arxiv.org/abs/2506.19467v2
- Date: Mon, 04 Aug 2025 07:19:31 GMT
- Title: Can Reasoning Help Large Language Models Capture Human Annotator Disagreement?
- Authors: Jingwei Ni, Yu Fan, Vilém Zouhar, Donya Rooein, Alexander Hoyle, Mrinmaya Sachan, Markus Leippold, Dirk Hovy, Elliott Ash,
- Abstract summary: Variation in human annotation (i.e., disagreements) is common in NLP.<n>We evaluate the influence of different reasoning settings on Large Language Model disagreement modeling.<n>Surprisingly, our results show that RLVR-style reasoning degrades performance in disagreement modeling.
- Score: 84.32752330104775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variation in human annotation (i.e., disagreements) is common in NLP, often reflecting important information like task subjectivity and sample ambiguity. Modeling this variation is important for applications that are sensitive to such information. Although RLVR-style reasoning (Reinforcement Learning with Verifiable Rewards) has improved Large Language Model (LLM) performance on many tasks, it remains unclear whether such reasoning enables LLMs to capture informative variation in human annotation. In this work, we evaluate the influence of different reasoning settings on LLM disagreement modeling. We systematically evaluate each reasoning setting across model sizes, distribution expression methods, and steering methods, resulting in 60 experimental setups across 3 tasks. Surprisingly, our results show that RLVR-style reasoning degrades performance in disagreement modeling, while naive Chain-of-Thought (CoT) reasoning improves the performance of RLHF LLMs (RL from human feedback). These findings underscore the potential risk of replacing human annotators with reasoning LLMs, especially when disagreements are important.
Related papers
- Bridging the Gap: In-Context Learning for Modeling Human Disagreement [8.011316959982654]
Large Language Models (LLMs) have shown strong performance on NLP classification tasks.<n>This study examines whether LLMs can capture multiple perspectives and reflect annotator disagreement in subjective tasks such as hate speech and offensive language detection.
arXiv Detail & Related papers (2025-06-06T14:24:29Z) - Fostering Appropriate Reliance on Large Language Models: The Role of Explanations, Sources, and Inconsistencies [66.30619782227173]
Large language models (LLMs) can produce erroneous responses that sound fluent and convincing.<n>We identify several features of LLM responses that shape users' reliance.<n>We find that explanations increase reliance on both correct and incorrect responses.<n>We observe less reliance on incorrect responses when sources are provided or when explanations exhibit inconsistencies.
arXiv Detail & Related papers (2025-02-12T16:35:41Z) - Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment [30.605500809158986]
We propose a novel causal reward modeling approach that integrates causality to mitigate spurious correlations.<n>Our approach mitigates various types of spurious correlations effectively, resulting in more reliable and fair alignment of LLMs with human preferences.
arXiv Detail & Related papers (2025-01-16T16:00:37Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
We present RUPBench, a benchmark designed to evaluate large language models (LLMs) across diverse reasoning tasks.
Our benchmark incorporates 15 reasoning datasets, categorized into commonsense, arithmetic, logical, and knowledge-intensive reasoning.
By examining the performance of state-of-the-art LLMs such as GPT-4o, Llama3, Phi-3, and Gemma on both original and perturbed datasets, we provide a detailed analysis of their robustness and error patterns.
arXiv Detail & Related papers (2024-06-16T17:26:44Z) - Large Language Models are Biased Reinforcement Learners [0.0]
We show that large language models (LLMs) exhibit behavioral signatures of a relative value bias.
Computational cognitive modeling reveals that LLM behavior is well-described by a simple RL algorithm.
arXiv Detail & Related papers (2024-05-19T01:43:52Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) are used to automate decision-making tasks.<n>In this paper, we evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.<n>We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types.<n>These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - NPHardEval4V: A Dynamic Reasoning Benchmark of Multimodal Large Language
Models [34.91372939329467]
We introduce a benchmark, NPHardEval4V, to evaluate the pure reasoning abilities of MLLMs.
Our findings reveal significant discrepancies in reasoning abilities across different models.
We also investigate the impact of different prompting styles, including visual, text, and combined visual and text prompts, on the reasoning abilities of MLLMs.
arXiv Detail & Related papers (2024-03-04T07:10:31Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
We investigate the extent to which large language models (LLMs) reflect human response biases, if at all.
We design a dataset and framework to evaluate whether LLMs exhibit human-like response biases in survey questionnaires.
Our comprehensive evaluation of nine models shows that popular open and commercial LLMs generally fail to reflect human-like behavior.
arXiv Detail & Related papers (2023-11-07T15:40:43Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Evaluating the Deductive Competence of Large Language Models [0.2218292673050528]
We investigate whether several large language models (LLMs) can solve a classic type of deductive reasoning problem.
We do find performance differences between conditions; however, they do not improve overall performance.
We find that performance interacts with presentation format and content in unexpected ways that differ from human performance.
arXiv Detail & Related papers (2023-09-11T13:47:07Z) - Using Natural Language Explanations to Rescale Human Judgments [81.66697572357477]
We propose a method to rescale ordinal annotations and explanations using large language models (LLMs)<n>We feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric.<n>Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.
arXiv Detail & Related papers (2023-05-24T06:19:14Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
Large language models (LLMs) have shown promise for automatic summarization but the reasons behind their successes are poorly understood.
We find instruction tuning, and not model size, is the key to the LLM's zero-shot summarization capability.
arXiv Detail & Related papers (2023-01-31T18:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.