Effect of noise and topologies on multi-photon quantum protocols
- URL: http://arxiv.org/abs/2505.19270v2
- Date: Wed, 28 May 2025 00:57:34 GMT
- Title: Effect of noise and topologies on multi-photon quantum protocols
- Authors: Nitin Jha, Abhishek Parakh, Mahadevan Subramaniam,
- Abstract summary: Quantum-augmented networks aim to use quantum phenomena to improve detection and protection against malicious actors.<n>In such hybrid networks, quantum protocols based on single photons become a bottleneck for transmission distances and data speeds.<n>Multi-photon quantum protocols, on the other hand, are designed to operate under practical assumptions and do not require single photon emitters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum-augmented networks aim to use quantum phenomena to improve detection and protection against malicious actors in a classical communication network. This may include multiplexing quantum signals into classical fiber optical channels and incorporating purely quantum links alongside classical links in the network. In such hybrid networks, quantum protocols based on single photons become a bottleneck for transmission distances and data speeds, thereby reducing entire network performance. Furthermore, many of the security assumptions of the single-photon protocols do not hold up in practice because of the impossibility of manufacturing single-photon emitters. Multi-photon quantum protocols, on the other hand, are designed to operate under practical assumptions and do not require single photon emitters. As a result, they provide higher levels of security guarantees and longer transmission distances. However, the effect of channel and device noise on multiphoton protocols in terms of security, transmission distances, and bit rates has not been investigated. In this paper, we focus on channel noise and present our observations on the effect of various types of noise on multi-photon protocols. We also investigate the effect of topologies such as ring, star, and torus on the noise characteristics of the multi-photon protocols. Our results show the possible advantages of switching to multi-photon protocols and give insights into the repeater placement and topology choice for quantum-augmented networks.
Related papers
- Impact of dephased entangled states and varying measurement orientations on the reliability of cryptographic keys generated via the quantum protocol E91: A quantum simulation approach [0.0]
This work focuses on the performance of the E91 quantum key distribution protocol under the variation of two elements.<n>We use a quantum computational approach by means of the IBM's API Qiskit to simulate the optical implementation of the studied cryptographic protocol.<n>Results show that the performance of the quantum transmission is highly impacted by the product between the exciton lifetime and the quantum dot's fine structure splitting.
arXiv Detail & Related papers (2024-12-04T22:46:45Z) - Faithful quantum teleportation via a nanophotonic nonlinear Bell state analyzer [3.9379777965064524]
We show a nonlinear Bell state analyzer for time-bin encoded photons based on a nanophotonic cavity with efficient sum-frequency generation.
Our result demonstrates that nonlinear-optical entangling operations, empowered by our efficient nanophotonics platform, can realize faithful quantum information protocols.
arXiv Detail & Related papers (2024-11-23T03:44:06Z) - A Hybrid Approach to Mitigate Errors in Linear Photonic Bell-State Measurement for Quantum Interconnects [0.0]
We introduce a novel hybrid detection scheme for Bell-state measurement.
We derive explicit fidelities for quantum teleportation and entanglement swapping processes.
This work provides a new tool for linear optics schemes, with applications to quantum state engineering and quantum interconnects.
arXiv Detail & Related papers (2024-06-14T18:00:00Z) - Optical single-shot readout of spin qubits in silicon [41.94295877935867]
silicon nanofabrication offers unique advantages for integration and up-scaling.
Small spin-qubit registers have exceeded error-correction thresholds, their connection to large quantum computers is an outstanding challenge.
We implement such an efficient spin-photon interface based on erbium dopants in a nanophotonic resonator.
arXiv Detail & Related papers (2024-05-08T18:30:21Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Robust excitation of C-band quantum dots for quantum communication [0.0]
We experimentally demonstrate how varying the pump energy and spectral detuning can improve quantum-secured communication rates.
These findings have significant implications for general implementations of QD single-photon sources in practical quantum communication networks.
arXiv Detail & Related papers (2023-05-22T17:35:18Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
arXiv Detail & Related papers (2022-09-17T12:59:09Z) - Coexistent quantum channel characterization using spectrally resolved
Bayesian quantum process tomography [0.0]
Coexistence of quantum and classical signals over same optical fiber is critical for operating quantum networks.
We systematically characterize the quantum channel that results from simultaneously distributing approximate single-photon polarization-encoded qubits.
arXiv Detail & Related papers (2022-08-30T19:57:45Z) - Protocol for generation of high-dimensional entanglement from an array
of non-interacting photon emitters [0.0]
We present a protocol for the near-deterministic generation of $N$-photon, $d$-dimensional photonic Greenberger-Horne-Zeilinger (GHZ) states.
We analyse the impact on performance of common sources of error for quantum emitters, such as photon spectral distinguishability and temporal mismatch.
Our protocol exhibits improved loss tolerance and key rates when increasing the dimensionality beyond binary encodings.
arXiv Detail & Related papers (2022-01-04T15:09:35Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.