論文の概要: Architectures of Error: A Philosophical Inquiry into AI and Human Code Generation
- arxiv url: http://arxiv.org/abs/2505.19353v1
- Date: Sun, 25 May 2025 22:49:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.067568
- Title: Architectures of Error: A Philosophical Inquiry into AI and Human Code Generation
- Title(参考訳): エラーのアーキテクチャ:AIと人間のコード生成に関する哲学的考察
- Authors: Camilo Chacón Sartori,
- Abstract要約: 本稿では、人間と機械のコード生成を区別するために、Error'のアーキテクチャを明確に述べる。
エラーに対する脆弱性を共有することで、この区別は基本的に異なる因果関係(人間認知と人工確率)を明らかにしている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of generative AI (GenAI), Large Language Models are increasingly employed for code generation, becoming active co-authors alongside human programmers. Focusing specifically on this application domain, this paper articulates distinct ``Architectures of Error'' to ground an epistemic distinction between human and machine code generation. Examined through their shared vulnerability to error, this distinction reveals fundamentally different causal origins: human-cognitive versus artificial-stochastic. To develop this framework and substantiate the distinction, the analysis draws critically upon Dennett's mechanistic functionalism and Rescher's methodological pragmatism. I argue that a systematic differentiation of these error profiles raises critical philosophical questions concerning semantic coherence, security robustness, epistemic limits, and control mechanisms in human-AI collaborative software development. The paper also utilizes Floridi's levels of abstraction to provide a nuanced understanding of how these error dimensions interact and may evolve with technological advancements. This analysis aims to offer philosophers a structured framework for understanding GenAI's unique epistemological challenges, shaped by these architectural foundations, while also providing software engineers a basis for more critically informed engagement.
- Abstract(参考訳): 生成AI(GenAI)の台頭に伴い、大規模言語モデルはコード生成にますます採用され、人間のプログラマとともに活発な共著者になっている。
このアプリケーション領域に特化して、本論文では、人間と機械のコード生成の疫学的な区別を基礎として、区別された‘エラーのアーキテクチャ’を明確に述べる。
エラーに対する脆弱性を共有することで、この区別は基本的に異なる因果関係(人間認知と人工確率)を明らかにしている。
この枠組みを開発し、その区別を裏付けるために、分析はデネットの機械的機能主義とレッシャーの方法論的実用主義に批判的に引き起こされる。
これらのエラープロファイルの体系的な分化は、人間とAIの共同ソフトウェア開発における意味的一貫性、セキュリティの堅牢性、疫学的限界、制御メカニズムに関する批判的な哲学的疑問を提起する。
この論文は、フロリディの抽象化レベルを利用して、これらの誤差次元がどのように相互作用し、技術的進歩とともに進化するかを微妙に理解する。
この分析は、GenAIのユニークな認識論的課題を理解するための構造化されたフレームワークを提供することを目的としている。
関連論文リスト
- Continuum-Interaction-Driven Intelligence: Human-Aligned Neural Architecture via Crystallized Reasoning and Fluid Generation [1.5800607910450124]
現在のAIシステムは、幻覚、予測不能、そして人間の意思決定と不一致といった課題に直面している。
本研究では、確率的生成(LLM)とホワイトボックスの手続き的推論(チェーン・オブ・シント)を統合し、解釈可能で、継続的な学習可能で、人間に準拠したAIシステムを構築する二チャンネルインテリジェントアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-04-12T18:15:49Z) - The Philosophical Foundations of Growing AI Like A Child [0.0]
本稿では,人間と機械の認知発達の相違から生じる課題について論じる。
人間の中核知識の実証的な証拠を探究し、言語モデルがそれを取得できない理由を分析し、この制限は固有のアーキテクチャ上の制約ではないと主張する。
論文 参考訳(メタデータ) (2025-02-15T09:47:20Z) - The Superalignment of Superhuman Intelligence with Large Language Models [63.96120398355404]
我々は,この疑問に答えるために,学習の観点からスーパーアライメントの概念について議論する。
スーパーアライメントにおけるいくつかの重要な研究課題、すなわち、弱いから強い一般化、スケーラブルな監視、評価に焦点を当てる。
本稿では,学習者モデルの弱点を露呈しようとする敵対的クエリを生成する攻撃者,最小限の人間専門家とともに,批判モデルによって生成されたスケーラブルなフィードバックから学習することで自己を洗練させる学習者,与えられた質問応答対に対する批判や説明を生成する批判者,そして批判によって学習者を改善することを目的とした,3つのモジュールからなるスーパーアライメントの概念的枠組みを提案する。
論文 参考訳(メタデータ) (2024-12-15T10:34:06Z) - Deception Analysis with Artificial Intelligence: An Interdisciplinary Perspective [0.9790236766474198]
私たちは、欺くAIに関するタイムリーで意味のある学際的な視点を構築します。
DAMAS - 社会認知モデル作成のための総合的多エージェントシステムフレームワークで, 詐欺の分析を行う。
本稿では,コンピュータサイエンス,哲学,心理学,倫理,インテリジェンス・アナリティクスの観点から,AIアプローチによる騙しのモデル化と説明について述べる。
論文 参考訳(メタデータ) (2024-06-09T10:31:26Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
本稿では,創発的コミュニケーション(EmCom)による説明可能な人工知能(xAI)の強化のための理論的枠組みを提案する。
我々は、EmComのAIシステムへの新たな統合を探求し、入力と出力の間の従来の連想関係から、より微妙で因果的解釈へのパラダイムシフトを提供する。
本稿は、このアプローチの理論的基盤、潜在的に広い応用、そして、責任と透明なAIシステムに対するニーズの増大と整合性について論じる。
論文 参考訳(メタデータ) (2024-01-29T02:28:39Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Intelligent problem-solving as integrated hierarchical reinforcement
learning [11.284287026711125]
生物学的エージェントにおける複雑な問題解決行動の開発は階層的認知機構に依存している。
本稿では,生物にインスパイアされた階層的なメカニズムを組み込むことにより,人工エージェントの高度な問題解決能力を実現する方法を提案する。
われわれの結果は、より洗練された認知にインスパイアされた階層型機械学習アーキテクチャの開発を導くことを期待している。
論文 参考訳(メタデータ) (2022-08-18T09:28:03Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。