論文の概要: Uniform convergence of the smooth calibration error and its relationship with functional gradient
- arxiv url: http://arxiv.org/abs/2505.19396v1
- Date: Mon, 26 May 2025 01:23:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.09235
- Title: Uniform convergence of the smooth calibration error and its relationship with functional gradient
- Title(参考訳): 滑らかな校正誤差の一様収束と関数勾配との関係
- Authors: Futoshi Futami, Atsushi Nitanda,
- Abstract要約: この研究は滑らかな校正誤差(CE)に焦点を当て、一様収束境界を提供する。
我々は3つの代表的なアルゴリズムを解析する: 勾配の押し上げ木、カーネルの押し上げ、2層ニューラルネットワーク。
この結果は,信頼性のある確率モデルを設計するための新たな理論的洞察と実践的ガイダンスを提供する。
- 参考スコア(独自算出の注目度): 10.906645958268939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Calibration is a critical requirement for reliable probabilistic prediction, especially in high-risk applications. However, the theoretical understanding of which learning algorithms can simultaneously achieve high accuracy and good calibration remains limited, and many existing studies provide empirical validation or a theoretical guarantee in restrictive settings. To address this issue, in this work, we focus on the smooth calibration error (CE) and provide a uniform convergence bound, showing that the smooth CE is bounded by the sum of the smooth CE over the training dataset and a generalization gap. We further prove that the functional gradient of the loss function can effectively control the training smooth CE. Based on this framework, we analyze three representative algorithms: gradient boosting trees, kernel boosting, and two-layer neural networks. For each, we derive conditions under which both classification and calibration performances are simultaneously guaranteed. Our results offer new theoretical insights and practical guidance for designing reliable probabilistic models with provable calibration guarantees.
- Abstract(参考訳): キャリブレーションは、特にリスクの高いアプリケーションにおいて、信頼性の高い確率予測のための重要な要件である。
しかし、学習アルゴリズムが高い精度と良好な校正を同時に達成できる理論的理解は依然として限られており、既存の多くの研究は実証的検証や制限的設定の理論的保証を提供している。
この問題に対処するため,本研究では,スムーズなキャリブレーション誤差(CE)に着目し,スムーズなCEがトレーニングデータセット上のスムーズなCEの和と一般化ギャップによって束縛されていることを示す。
さらに、損失関数の関数勾配が、スムーズなCEを効果的に制御できることを証明した。
この枠組みに基づいて、勾配向上木、カーネル強化、2層ニューラルネットワークの3つの代表的なアルゴリズムを解析する。
それぞれに分類性能と校正性能を同時に保証する条件を導出する。
以上の結果から,検証可能なキャリブレーション保証を備えた信頼性確率モデルを設計するための新たな理論的洞察と実践的ガイダンスが得られた。
関連論文リスト
- The Final Layer Holds the Key: A Unified and Efficient GNN Calibration Framework [28.079132719743697]
グラフニューラルネットワーク(GNN)は、グラフベースのタスクにおいて顕著な効果を示した。
しかしながら、彼らの予測的自信は、しばしば誤解され、通常、自信不足を示す。
本稿では,この問題に対処するための簡易かつ効率的なグラフキャリブレーション法を提案する。
論文 参考訳(メタデータ) (2025-05-16T15:02:17Z) - Calibrating Deep Neural Network using Euclidean Distance [5.675312975435121]
機械学習では、Focal Lossは、サンプルの分類が難しいことを強調することで、誤分類率を減らすために一般的に使用される。
高校正誤差は予測確率と実際の結果との相違を示し、モデルの信頼性に影響を及ぼす。
本研究では,FCL (Focal Loss) と呼ばれる新しい損失関数を導入する。
論文 参考訳(メタデータ) (2024-10-23T23:06:50Z) - Orthogonal Causal Calibration [55.28164682911196]
我々は、因果校正作業を標準(非因果予測モデル)の校正作業に還元する一般的なアルゴリズムを開発する。
以上の結果から,既存のキャリブレーションアルゴリズムを因果的設定に応用できることが示唆された。
論文 参考訳(メタデータ) (2024-06-04T03:35:25Z) - Beyond Calibration: Assessing the Probabilistic Fit of Neural Regressors via Conditional Congruence [2.2359781747539396]
ディープネットワークは、しばしば過剰な自信と不一致な予測分布に悩まされる。
本稿では,条件付きカーネルの平均埋め込みを用いて,学習した予測分布とデータセットにおける経験的条件分布との距離を推定する,条件付きコングルーエンス誤差(CCE)について紹介する。
本研究では,1)データ生成プロセスが知られている場合の分布間の不一致を正確に定量化し,2)実世界の高次元画像回帰タスクに効果的にスケールし,3)未知のインスタンス上でのモデルの信頼性を評価することができることを示す。
論文 参考訳(メタデータ) (2024-05-20T23:30:07Z) - Calibrated Uncertainty Quantification for Operator Learning via
Conformal Prediction [95.75771195913046]
本稿では, リスク制御型量子ニューラル演算子, 分布のない有限サンプル機能キャリブレーション等式予測法を提案する。
関数領域上の点の期待値として定義されるカバレッジ率に関する理論的キャリブレーションを保証する。
2次元ダーシー流と3次元自動車表面圧力予測タスクに関する実験結果から,我々の理論的結果が検証された。
論文 参考訳(メタデータ) (2024-02-02T23:43:28Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Modular Conformal Calibration [80.33410096908872]
回帰における再校正のためのアルゴリズムを多種多様なクラスで導入する。
このフレームワークは、任意の回帰モデルをキャリブレーションされた確率モデルに変換することを可能にする。
我々は17の回帰データセットに対するMCCの実証的研究を行った。
論文 参考訳(メタデータ) (2022-06-23T03:25:23Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
不確実性定量のための回帰における予測間隔の生成について検討する。
我々は一般学習理論を用いて、リプシッツ連続性とVC-サブグラフクラスを含む最適性と実現可能性のトレードオフを特徴づける。
我々は既存のベンチマークと比べてテスト性能の点で、区間生成とキャリブレーションアルゴリズムの強みを実証的に示している。
論文 参考訳(メタデータ) (2021-02-26T17:55:30Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。