Fairness Practices in Industry: A Case Study in Machine Learning Teams Building Recommender Systems
- URL: http://arxiv.org/abs/2505.19441v1
- Date: Mon, 26 May 2025 02:59:57 GMT
- Title: Fairness Practices in Industry: A Case Study in Machine Learning Teams Building Recommender Systems
- Authors: Jing Nathan Yan, Junxiong Wang, Jeffrey M. Rzeszotarski, Allison Koenecke,
- Abstract summary: We focus on current debiasing practices, applied metrics, collaborative strategies, and integrating academic research into practice.<n>Findings show a preference for multi-dimensional debiasing over traditional demographic methods.<n>This study also highlights the difficulties in balancing fairness with both the practitioner's individual (bottom-up) roles and organizational (top-down) workplace constraints.
- Score: 11.599213317208562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid proliferation of recommender systems necessitates robust fairness practices to address inherent biases. Assessing fairness, though, is challenging due to constantly evolving metrics and best practices. This paper analyzes how industry practitioners perceive and incorporate these changing fairness standards in their workflows. Through semi-structured interviews with 11 practitioners from technical teams across a range of large technology companies, we investigate industry implementations of fairness in recommendation system products. We focus on current debiasing practices, applied metrics, collaborative strategies, and integrating academic research into practice. Findings show a preference for multi-dimensional debiasing over traditional demographic methods, and a reliance on intuitive rather than academic metrics. This study also highlights the difficulties in balancing fairness with both the practitioner's individual (bottom-up) roles and organizational (top-down) workplace constraints, including the interplay with legal and compliance experts. Finally, we offer actionable recommendations for the recommender system community and algorithmic fairness practitioners, underlining the need to refine fairness practices continually.
Related papers
- Contextual Fairness-Aware Practices in ML: A Cost-Effective Empirical Evaluation [48.943054662940916]
We investigate fairness-aware practices from two perspectives: contextual and cost-effectiveness.<n>Our findings provide insights into how context influences the effectiveness of fairness-aware practices.<n>This research aims to guide SE practitioners in selecting practices that achieve fairness with minimal performance costs.
arXiv Detail & Related papers (2025-03-19T18:10:21Z) - A Benchmark for Fairness-Aware Graph Learning [58.515305543487386]
We present an extensive benchmark on ten representative fairness-aware graph learning methods.
Our in-depth analysis reveals key insights into the strengths and limitations of existing methods.
arXiv Detail & Related papers (2024-07-16T18:43:43Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
In many machine learning (ML) tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance.
In this paper, we define the fairness-aware learning task with limited training samples as the emphfair few-shot learning problem.
We devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks.
arXiv Detail & Related papers (2023-08-28T06:31:37Z) - FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods [84.1077756698332]
This paper introduces the Fair Fairness Benchmark (textsfFFB), a benchmarking framework for in-processing group fairness methods.
We provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness.
arXiv Detail & Related papers (2023-06-15T19:51:28Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
We present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems.
Next, we delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications.
arXiv Detail & Related papers (2023-06-01T07:08:22Z) - Survey on Fair Reinforcement Learning: Theory and Practice [9.783469272270896]
We provide an extensive overview of fairness approaches that have been implemented via a reinforcement learning (RL) framework.
We discuss various practical applications in which RL methods have been applied to achieve a fair solution with high accuracy.
We highlight a few major issues to explore in order to advance the field of fair-RL.
arXiv Detail & Related papers (2022-05-20T09:07:28Z) - Optimising Equal Opportunity Fairness in Model Training [60.0947291284978]
Existing debiasing methods, such as adversarial training and removing protected information from representations, have been shown to reduce bias.
We propose two novel training objectives which directly optimise for the widely-used criterion of it equal opportunity, and show that they are effective in reducing bias while maintaining high performance over two classification tasks.
arXiv Detail & Related papers (2022-05-05T01:57:58Z) - A Framework for Fairness: A Systematic Review of Existing Fair AI
Solutions [4.594159253008448]
A large portion of fairness research has gone to producing tools that machine learning practitioners can use to audit for bias while designing their algorithms.
There is a lack of application of these fairness solutions in practice.
This review provides an in-depth summary of the algorithmic bias issues that have been defined and the fairness solution space that has been proposed.
arXiv Detail & Related papers (2021-12-10T17:51:20Z) - Fairness On The Ground: Applying Algorithmic Fairness Approaches to
Production Systems [4.288137349392433]
This paper presents an example of applying algorithmic fairness approaches to complex production systems within the context of a large technology company.
We discuss how we disentangle normative questions of product and policy design from empirical questions of system implementation.
We also present an approach for answering questions of the latter sort, which allows us to measure how machine learning systems and human labelers are making these tradeoffs.
arXiv Detail & Related papers (2021-03-10T16:42:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.