DoctorRAG: Medical RAG Fusing Knowledge with Patient Analogy through Textual Gradients
- URL: http://arxiv.org/abs/2505.19538v1
- Date: Mon, 26 May 2025 05:56:23 GMT
- Title: DoctorRAG: Medical RAG Fusing Knowledge with Patient Analogy through Textual Gradients
- Authors: Yuxing Lu, Gecheng Fu, Wei Wu, Xukai Zhao, Sin Yee Goi, Jinzhuo Wang,
- Abstract summary: Existing medical RAG systems mainly leverage knowledge from medical knowledge bases.<n>We propose DoctorRAG, a RAG framework that emulates doctor-like reasoning by integrating both explicit clinical knowledge and implicit case-based experience.<n>Our approach generates more accurate, relevant, and comprehensive responses, taking a step towards more doctor-like medical reasoning systems.
- Score: 4.062920795080979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing medical RAG systems mainly leverage knowledge from medical knowledge bases, neglecting the crucial role of experiential knowledge derived from similar patient cases -- a key component of human clinical reasoning. To bridge this gap, we propose DoctorRAG, a RAG framework that emulates doctor-like reasoning by integrating both explicit clinical knowledge and implicit case-based experience. DoctorRAG enhances retrieval precision by first allocating conceptual tags for queries and knowledge sources, together with a hybrid retrieval mechanism from both relevant knowledge and patient. In addition, a Med-TextGrad module using multi-agent textual gradients is integrated to ensure that the final output adheres to the retrieved knowledge and patient query. Comprehensive experiments on multilingual, multitask datasets demonstrate that DoctorRAG significantly outperforms strong baseline RAG models and gains improvements from iterative refinements. Our approach generates more accurate, relevant, and comprehensive responses, taking a step towards more doctor-like medical reasoning systems.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning [57.873833577058]
We build a multimodal dataset enriched with extensive medical knowledge.<n>We then introduce our medical-specialized MLLM: Lingshu.<n>Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities.
arXiv Detail & Related papers (2025-06-08T08:47:30Z) - A Retrieval-Augmented Knowledge Mining Method with Deep Thinking LLMs for Biomedical Research and Clinical Support [4.663954774358363]
We introduce Integrated and Progressive Retrieval-Augmented Reasoning (IP-RAR) to enhance retrieval accuracy and knowledge reasoning.<n>IP-RAR maximizes information recall through Integrated Reasoning-based Retrieval and refines knowledge via Progressive Reasoning-based Generation.<n>This framework helps doctors efficiently integrate treatment evidence for personalized medication plans.
arXiv Detail & Related papers (2025-03-29T09:56:42Z) - Experience Retrieval-Augmentation with Electronic Health Records Enables Accurate Discharge QA [14.331262700941268]
RAG is extensively applied to provide factual medical knowledge.<n>Case-based knowledge is critical for effective medical reasoning.<n>We propose Experience Retrieval Augmentation - ExpRAG framework.
arXiv Detail & Related papers (2025-03-23T04:26:06Z) - RGAR: Recurrence Generation-augmented Retrieval for Factual-aware Medical Question Answering [29.065294682044]
The current paradigm, Retrieval-Augmented Generation (RAG), acquires expertise medical knowledge through large-scale corpus retrieval.<n>This paper introduces RGAR, a recurrence generation-augmented retrieval framework that retrieves both relevant factual and conceptual knowledge from dual sources.
arXiv Detail & Related papers (2025-02-19T01:50:10Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Bridging Stepwise Lab-Informed Pretraining and Knowledge-Guided Learning for Diagnostic Reasoning [20.369746122143063]
We propose a dual-expertise framework that combines two complementary sources of information.<n>For external knowledge, we construct a Diagnosis Knowledge Graph (KG) that encodes both hierarchical language and semantic relations enriched by large models.<n>We introduce a lab-informed proxy task that guides the model to follow a clinically consistent stepwise reasoning process based on lab test signals.
arXiv Detail & Related papers (2024-10-25T20:25:22Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
Existing models often lack the medical context relevent to clinical tasks, prompting the incorporation of external knowledge.
We propose REALM, a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR representations.
Our experiments on MIMIC-III mortality and readmission tasks showcase the superior performance of our REALM framework over baselines.
arXiv Detail & Related papers (2024-02-10T18:27:28Z) - Experience and Evidence are the eyes of an excellent summarizer! Towards
Knowledge Infused Multi-modal Clinical Conversation Summarization [46.613541673040544]
We propose a knowledge-infused, multi-modal, multi-tasking medical domain identification and clinical conversation summary generation framework.
We develop a multi-modal, multi-intent clinical conversation summarization corpus annotated with intent, symptom, and summary.
The extensive set of experiments led to the following findings: (a) critical significance of visuals, (b) more precise and medical entity preserving summary with additional knowledge infusion, and (c) a correlation between medical department identification and clinical synopsis generation.
arXiv Detail & Related papers (2023-09-27T15:49:43Z) - A Review on Knowledge Graphs for Healthcare: Resources, Applications, and Promises [59.4999994297993]
This comprehensive review aims to provide an overview of the current state of Healthcare Knowledge Graphs (HKGs)<n>We thoroughly analyzed existing literature on HKGs, covering their construction methodologies, utilization techniques, and applications.<n>The review highlights the potential of HKGs to significantly impact biomedical research and clinical practice.
arXiv Detail & Related papers (2023-06-07T21:51:56Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.