Distilling Closed-Source LLM's Knowledge for Locally Stable and Economic Biomedical Entity Linking
- URL: http://arxiv.org/abs/2505.19722v1
- Date: Mon, 26 May 2025 09:10:19 GMT
- Title: Distilling Closed-Source LLM's Knowledge for Locally Stable and Economic Biomedical Entity Linking
- Authors: Yihao Ai, Zhiyuan Ning, Weiwei Dai, Pengfei Wang, Yi Du, Wenjuan Cui, Kunpeng Liu, Yuanchun Zhou,
- Abstract summary: We propose RPDR'', a framework combining closed-source LLMs and open-source LLMs for re-ranking candidates retrieved by a retriever fine-tuned with a small amount of data.<n>We evaluate RPDR on two datasets, including one real-world dataset and one publicly available dataset involving two languages: Chinese and English.
- Score: 10.436941992571981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biomedical entity linking aims to map nonstandard entities to standard entities in a knowledge base. Traditional supervised methods perform well but require extensive annotated data to transfer, limiting their usage in low-resource scenarios. Large language models (LLMs), especially closed-source LLMs, can address these but risk stability issues and high economic costs: using these models is restricted by commercial companies and brings significant economic costs when dealing with large amounts of data. To address this, we propose ``RPDR'', a framework combining closed-source LLMs and open-source LLMs for re-ranking candidates retrieved by a retriever fine-tuned with a small amount of data. By prompting a closed-source LLM to generate training data from unannotated data and fine-tuning an open-source LLM for re-ranking, we effectively distill the knowledge to the open-source LLM that can be deployed locally, thus avoiding the stability issues and the problem of high economic costs. We evaluate RPDR on two datasets, including one real-world dataset and one publicly available dataset involving two languages: Chinese and English. RPDR achieves 0.019 Acc@1 improvement and 0.036 Acc@1 improvement on the Aier dataset and the Ask A Patient dataset when the amount of training data is not enough. The results demonstrate the superiority and generalizability of the proposed framework.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.<n>LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.<n>Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Federated In-Context LLM Agent Learning [3.4757641432843487]
Large Language Models (LLMs) have revolutionized intelligent services by enabling logical reasoning, tool use, and interaction with external systems as agents.<n>In this paper, we propose a novel privacy-preserving Federated In-context LLM Agent Learning (FICAL) algorithm.<n>The results show that FICAL has competitive performance compared to other SOTA baselines with a significant communication cost decrease of $mathbf3.33times105$ times.
arXiv Detail & Related papers (2024-12-11T03:00:24Z) - VickreyFeedback: Cost-efficient Data Construction for Reinforcement Learning from Human Feedback [2.07180164747172]
This paper addresses the cost-efficiency aspect of Reinforcement Learning from Human Feedback (RLHF)<n>RLHF leverages datasets of human preferences over outputs of large language models (LLM)<n>We show that introducing an auction mechanism can play an essential role in enhancing the cost-efficiency of RLHF.
arXiv Detail & Related papers (2024-09-27T03:15:07Z) - Leveraging Open-Source Large Language Models for Native Language Identification [1.6267479602370543]
Native Language Identification (NLI) has applications in forensics, marketing, and second language acquisition.<n>This study explores the potential of using open-source generative large language models (LLMs) for NLI.
arXiv Detail & Related papers (2024-09-15T08:14:18Z) - Knowing When to Ask -- Bridging Large Language Models and Data [3.111987311375933]
Large Language Models (LLMs) are prone to generating factually incorrect information when responding to queries that involve numerical and statistical data or other timely facts.
We present an approach for enhancing the accuracy of LLMs by integrating them with Data Commons.
arXiv Detail & Related papers (2024-09-10T17:51:21Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
arXiv Detail & Related papers (2024-03-22T08:57:07Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
Large Language models (LLMs) exhibit harmful social biases.
This work introduces a novel approach utilizing ChatGPT to generate synthetic training data.
arXiv Detail & Related papers (2024-02-19T01:28:48Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.