論文の概要: Machine Learning Algorithm for Noise Reduction and Disease-Causing Gene Feature Extraction in Gene Sequencing Data
- arxiv url: http://arxiv.org/abs/2505.19740v1
- Date: Mon, 26 May 2025 09:23:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.321433
- Title: Machine Learning Algorithm for Noise Reduction and Disease-Causing Gene Feature Extraction in Gene Sequencing Data
- Title(参考訳): 遺伝子シークエンシングデータにおけるノイズ低減と病因遺伝子の特徴抽出のための機械学習アルゴリズム
- Authors: Weichen Si, Yihao Ou, Zhen Tian,
- Abstract要約: 本稿では,DeepSeqDenoiseアルゴリズムを用いた遺伝子シークエンシングにおけるノイズ低減と病因遺伝子の特徴抽出のための機械学習手法を提案する。
特徴工学により17つの重要な特徴をスクリーニングし,94.3%の精度で病原性遺伝子を予測する統合学習モデルを構築した。
- 参考スコア(独自算出の注目度): 4.2547679858666285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose a machine learning-based method for noise reduction and disease-causing gene feature extraction in gene sequencing DeepSeqDenoise algorithm combines CNN and RNN to effectively remove the sequencing noise, and improves the signal-to-noise ratio by 9.4 dB. We screened 17 key features by feature engineering, and constructed an integrated learning model to predict disease-causing genes with 94.3% accuracy. We successfully identified 57 new candidate disease-causing genes in a cardiovascular disease cohort validation, and detected 3 missed variants in clinical applications. The method significantly outperforms existing tools and provides strong support for accurate diagnosis of genetic diseases.
- Abstract(参考訳): 本研究では,DeepSeqDenoiseアルゴリズムがCNNとRNNを組み合わせることで,シークエンシングノイズを効果的に除去し,9.4dBの信号対雑音比を向上する手法を提案する。
特徴工学により17つの重要な特徴をスクリーニングし,94.3%の精度で病原性遺伝子を予測する統合学習モデルを構築した。
心血管疾患コホート検査において57の新規疾患関連遺伝子を同定し,臨床応用では3種類の欠失型が検出された。
この方法は、既存のツールを著しく上回り、遺伝疾患の正確な診断に強力な支援を提供する。
関連論文リスト
- Stroke Disease Classification Using Machine Learning with Feature Selection Techniques [1.6044444452278062]
心臓病は世界中で致死率と死亡率の主要な原因である。
我々は,心臓病の分類を高度化するための特徴選択技術を備えた新しい投票システムを開発した。
XGBoostは、99%の精度、F1スコア、98%のリコール、100%のROC AUCを達成した。
論文 参考訳(メタデータ) (2025-04-01T07:16:49Z) - scMamba: A Pre-Trained Model for Single-Nucleus RNA Sequencing Analysis in Neurodegenerative Disorders [43.24785083027205]
scMambaは、snRNA-seq解析の品質と実用性を改善するために設計された事前訓練モデルである。
最近のMambaモデルにインスパイアされた scMamba は、線形アダプタ層、遺伝子埋め込み、双方向のMambaブロックを組み込んだ新しいアーキテクチャを導入している。
scMambaは、セルタイプアノテーション、ダブルト検出、インプット、差分表現された遺伝子の同定など、様々な下流タスクにおいて、ベンチマーク手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2025-02-12T11:48:22Z) - Survey and Improvement Strategies for Gene Prioritization with Large Language Models [61.24568051916653]
大規模言語モデル (LLM) は, 医学検査において良好に機能しているが, 希少な遺伝疾患の診断における有効性は評価されていない。
表現型と可溶性レベルに基づいて, マルチエージェントとヒトフェノタイプオントロジー(HPO)を分類した。
ベースラインでは、GPT-4は他のLLMよりも優れており、因果遺伝子を正しくランク付けする際の精度は30%近く向上した。
論文 参考訳(メタデータ) (2025-01-30T23:03:03Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Fuzzy Gene Selection and Cancer Classification Based on Deep Learning
Model [1.3072222152900117]
我々は,癌分類を容易にする情報的遺伝子を同定するための新しいファジィ遺伝子選択法(FGS)を開発した。
FGS法で癌分類は96.5%,96.2%,96%,95.9%の精度,精度,リコール,f1スコアを得た。
得られた6つのデータセットを調べることで、提案モデルはがんを効果的に分類する能力を示す。
論文 参考訳(メタデータ) (2023-05-04T21:52:57Z) - A New Deep Learning and XAI-Based Algorithm for Features Selection in
Genomics [5.787117733071415]
本稿では,ゲノム規模のデータに基づいて特徴選択を行う新しいアルゴリズムを提案する。
慢性リンパ性白血病データセットへの応用の結果は、アルゴリズムの有効性を証明している。
論文 参考訳(メタデータ) (2023-03-29T16:44:13Z) - Automated Huntington's Disease Prognosis via Biomedical Signals and
Shallow Machine Learning [0.0]
心電図, 心電図, 機能的近赤外分光データを用いて, 患者27名, コントロール36名, 不明6名のクリニックで収集した既製認定データセットを用いて検討した。
最大精度はスケールアウトしたExtremely Randomized Treesアルゴリズムにより達成され、受信者特性0.963の曲線下と91.353%の精度で達成された。
論文 参考訳(メタデータ) (2023-02-04T02:20:46Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
低次元遺伝子バイオマーカーを発見するための,新しい,自動かつ教師なしのフレームワークを提案する。
本手法は,高次元中心型非監視クラスタリングアルゴリズムLP-Stabilityアルゴリズムに基づく。
私達の署名は免疫炎症および免疫砂漠の腫瘍の区別の有望な結果報告します。
論文 参考訳(メタデータ) (2021-02-11T09:04:45Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。