Minimax Adaptive Online Nonparametric Regression over Besov Spaces
- URL: http://arxiv.org/abs/2505.19741v1
- Date: Mon, 26 May 2025 09:23:11 GMT
- Title: Minimax Adaptive Online Nonparametric Regression over Besov Spaces
- Authors: Paul Liautaud, Pierre Gaillard, Olivier Wintenberger,
- Abstract summary: We study online adversarial regression with convex losses against a rich class of continuous yet highly irregular prediction rules.<n>We introduce an adaptive wavelet-based algorithm that performs sequential prediction without prior knowledge of $(s,p,q)$.<n>We also design a locally adaptive extension capable of dynamically tracking spatially inhomogeneous smoothness.
- Score: 10.138723409205497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study online adversarial regression with convex losses against a rich class of continuous yet highly irregular prediction rules, modeled by Besov spaces $B_{pq}^s$ with general parameters $1 \leq p,q \leq \infty$ and smoothness $s > d/p$. We introduce an adaptive wavelet-based algorithm that performs sequential prediction without prior knowledge of $(s,p,q)$, and establish minimax-optimal regret bounds against any comparator in $B_{pq}^s$. We further design a locally adaptive extension capable of dynamically tracking spatially inhomogeneous smoothness. This adaptive mechanism adjusts the resolution of the predictions over both time and space, yielding refined regret bounds in terms of local regularity. Consequently, in heterogeneous environments, our adaptive guarantees can significantly surpass those obtained by standard global methods.
Related papers
- Smoothed Normalization for Efficient Distributed Private Optimization [54.197255548244705]
Federated learning enables machine learning models with privacy of participants.<n>There is no differentially private distributed method for training, non-feedback problems.<n>We introduce a new distributed algorithm $alpha$-$sf NormEC$ with provable convergence guarantees.
arXiv Detail & Related papers (2025-02-19T07:10:32Z) - Adaptive and non-adaptive minimax rates for weighted Laplacian-eigenmap
based nonparametric regression [14.003044924094597]
We show both adaptive and non-adaptive minimax rates of convergence for a family of weighted Laplacian-Eigenmap based nonparametric regression methods.
arXiv Detail & Related papers (2023-10-31T20:25:36Z) - Distributionally Robust Optimization with Bias and Variance Reduction [9.341215359733601]
We show that Prospect, a gradient-based algorithm, enjoys linear convergence for smooth regularized losses.
We also show that Prospect can converge 2-3$times$ faster than baselines such as gradient-based methods.
arXiv Detail & Related papers (2023-10-21T00:03:54Z) - Improving Adaptive Online Learning Using Refined Discretization [44.646191058243645]
We study unconstrained Online Linear Optimization with Lipschitz losses.
Motivated by the pursuit of instance optimality, we propose a new algorithm.
Central to these results is a continuous time approach to online learning.
arXiv Detail & Related papers (2023-09-27T21:54:52Z) - Transformers as Support Vector Machines [54.642793677472724]
We establish a formal equivalence between the optimization geometry of self-attention and a hard-margin SVM problem.
We characterize the implicit bias of 1-layer transformers optimized with gradient descent.
We believe these findings inspire the interpretation of transformers as a hierarchy of SVMs that separates and selects optimal tokens.
arXiv Detail & Related papers (2023-08-31T17:57:50Z) - Optimal Learning Rates for Regularized Least-Squares with a Fourier
Capacity Condition [14.910167993978487]
We derive minimax adaptive rates for a new, broad class of Tikhonov-regularized learning problems in Hilbert scales.
We demonstrate that the spectrum of the Mercer operator can be inferred in the presence of tight'' embeddings of suitable Hilbert scales.
arXiv Detail & Related papers (2022-04-16T18:32:33Z) - Lazy Lagrangians with Predictions for Online Learning [24.18464455081512]
We consider the general problem of online convex optimization with time-varying additive constraints.
A novel primal-dual algorithm is designed by combining a Follow-The-Regularized-Leader iteration with prediction-adaptive dynamic steps.
Our work extends the FTRL framework for this constrained OCO setting and outperforms the respective state-of-the-art greedy-based solutions.
arXiv Detail & Related papers (2022-01-08T21:49:10Z) - Dynamic Regret for Strongly Adaptive Methods and Optimality of Online
KRR [13.165557713537389]
We show that Strongly Adaptive (SA) algorithms can be viewed as a principled way of controlling dynamic regret.
We derive a new lower bound on a certain penalized regret which establishes the near minimax optimality of online Kernel Ridge Regression (KRR)
arXiv Detail & Related papers (2021-11-22T21:52:47Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
We study the citetgarber 2020online, where the loss functions may be chosen by an adversary, but are then presented online in a uniformly random order.
We show that citetgarber 2020online algorithms achieve the optimal bounds and significantly improve their stability.
arXiv Detail & Related papers (2021-06-29T09:48:46Z) - Dynamic Regret of Convex and Smooth Functions [93.71361250701075]
We investigate online convex optimization in non-stationary environments.
We choose the dynamic regret as the performance measure.
We show that it is possible to further enhance the dynamic regret by exploiting the smoothness condition.
arXiv Detail & Related papers (2020-07-07T14:10:57Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.