Advancements in Medical Image Classification through Fine-Tuning Natural Domain Foundation Models
- URL: http://arxiv.org/abs/2505.19779v1
- Date: Mon, 26 May 2025 10:04:40 GMT
- Title: Advancements in Medical Image Classification through Fine-Tuning Natural Domain Foundation Models
- Authors: Mobina Mansoori, Sajjad Shahabodini, Farnoush Bayatmakou, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi,
- Abstract summary: Using massive datasets, foundation models are large-scale, pre-trained models that perform a wide range of tasks.<n>This study investigates the application of recent state-of-the-art foundation models, DINOv2, MAE, VMamba, CoCa, SAM2, and AIMv2, for medical image classification.
- Score: 17.571552686063335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using massive datasets, foundation models are large-scale, pre-trained models that perform a wide range of tasks. These models have shown consistently improved results with the introduction of new methods. It is crucial to analyze how these trends impact the medical field and determine whether these advancements can drive meaningful change. This study investigates the application of recent state-of-the-art foundation models, DINOv2, MAE, VMamba, CoCa, SAM2, and AIMv2, for medical image classification. We explore their effectiveness on datasets including CBIS-DDSM for mammography, ISIC2019 for skin lesions, APTOS2019 for diabetic retinopathy, and CHEXPERT for chest radiographs. By fine-tuning these models and evaluating their configurations, we aim to understand the potential of these advancements in medical image classification. The results indicate that these advanced models significantly enhance classification outcomes, demonstrating robust performance despite limited labeled data. Based on our results, AIMv2, DINOv2, and SAM2 models outperformed others, demonstrating that progress in natural domain training has positively impacted the medical domain and improved classification outcomes. Our code is publicly available at: https://github.com/sajjad-sh33/Medical-Transfer-Learning.
Related papers
- Can Score-Based Generative Modeling Effectively Handle Medical Image Classification? [0.257133335028485]
In this study, we explore the use of score-based generative models as classifiers for medical images.<n>Our findings suggest that our proposed generative classifier model achieves superior classification results on CBIS-DDSM, INbreast and Vin-Dr Mammo datasets.
arXiv Detail & Related papers (2025-02-24T23:41:33Z) - Rethinking Foundation Models for Medical Image Classification through a Benchmark Study on MedMNIST [7.017817009055001]
We study the capabilities of foundation models in medical image classification tasks by conducting a benchmark study on the MedMNIST dataset.<n>We adopt various foundation models ranging from convolutional to Transformer-based models and implement both end-to-end training and linear probing for all classification tasks.
arXiv Detail & Related papers (2025-01-24T18:01:07Z) - Meta-Transfer Derm-Diagnosis: Exploring Few-Shot Learning and Transfer Learning for Skin Disease Classification in Long-Tail Distribution [1.8024397171920885]
This study conducts a detailed examination of the benefits and drawbacks of episodic and conventional training methodologies.
With minimal labeled examples, our models showed substantial information gains and better performance compared to previously trained models.
Our experiments, ranging from 2-way to 5-way classifications with up to 10 examples, showed a growing success rate for traditional transfer learning methods.
arXiv Detail & Related papers (2024-04-25T17:56:45Z) - Comparative Analysis of ImageNet Pre-Trained Deep Learning Models and
DINOv2 in Medical Imaging Classification [7.205610366609243]
In this paper, we performed a glioma grading task using three clinical modalities of brain MRI data.
We compared the performance of various pre-trained deep learning models, including those based on ImageNet and DINOv2.
Our findings indicate that in our clinical dataset, DINOv2's performance was not as strong as ImageNet-based pre-trained models.
arXiv Detail & Related papers (2024-02-12T11:49:08Z) - Are Natural Domain Foundation Models Useful for Medical Image
Classification? [2.7652948339147807]
We evaluate the performance of five foundation models across four well-established medical imaging datasets.
DINOv2 consistently outperforms the standard practice of ImageNet pretraining.
Other foundation models failed to consistently beat this established baseline indicating limitations in their transferability to medical image classification tasks.
arXiv Detail & Related papers (2023-10-30T13:21:56Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.