Can Score-Based Generative Modeling Effectively Handle Medical Image Classification?
- URL: http://arxiv.org/abs/2502.17727v1
- Date: Mon, 24 Feb 2025 23:41:33 GMT
- Title: Can Score-Based Generative Modeling Effectively Handle Medical Image Classification?
- Authors: Sushmita Sarker, Prithul Sarker, George Bebis, Alireza Tavakkoli,
- Abstract summary: In this study, we explore the use of score-based generative models as classifiers for medical images.<n>Our findings suggest that our proposed generative classifier model achieves superior classification results on CBIS-DDSM, INbreast and Vin-Dr Mammo datasets.
- Score: 0.257133335028485
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The remarkable success of deep learning in recent years has prompted applications in medical image classification and diagnosis tasks. While classification models have demonstrated robustness in classifying simpler datasets like MNIST or natural images such as ImageNet, this resilience is not consistently observed in complex medical image datasets where data is more scarce and lacks diversity. Moreover, previous findings on natural image datasets have indicated a potential trade-off between data likelihood and classification accuracy. In this study, we explore the use of score-based generative models as classifiers for medical images, specifically mammographic images. Our findings suggest that our proposed generative classifier model not only achieves superior classification results on CBIS-DDSM, INbreast and Vin-Dr Mammo datasets, but also introduces a novel approach to image classification in a broader context. Our code is publicly available at https://github.com/sushmitasarker/sgc_for_medical_image_classification
Related papers
- Could We Generate Cytology Images from Histopathology Images? An Empirical Study [1.791005104399795]
In this study, we have explored traditional image-to-image transfer models like CycleGAN, and Neural Style Transfer.
In this study, we have explored traditional image-to-image transfer models like CycleGAN, and Neural Style Transfer.
arXiv Detail & Related papers (2024-03-16T10:43:12Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Data Augmentation using Feature Generation for Volumetric Medical Images [0.08594140167290097]
Medical image classification is one of the most critical problems in the image recognition area.
One of the major challenges in this field is the scarcity of labelled training data.
Deep Learning models, in particular, show promising results on image segmentation and classification problems.
arXiv Detail & Related papers (2022-09-28T13:46:24Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Weakly-supervised Generative Adversarial Networks for medical image
classification [1.479639149658596]
We propose a novel medical image classification algorithm called Weakly-Supervised Generative Adversarial Networks (WSGAN)
WSGAN only uses a small number of real images without labels to generate fake images or mask images to enlarge the sample size of the training set.
We show that WSGAN can obtain relatively high learning performance by using few labeled and unlabeled data.
arXiv Detail & Related papers (2021-11-29T15:38:48Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - I Am Going MAD: Maximum Discrepancy Competition for Comparing
Classifiers Adaptively [135.7695909882746]
We name the MAximum Discrepancy (MAD) competition.
We adaptively sample a small test set from an arbitrarily large corpus of unlabeled images.
Human labeling on the resulting model-dependent image sets reveals the relative performance of the competing classifiers.
arXiv Detail & Related papers (2020-02-25T03:32:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.