Done Is Better than Perfect: Unlocking Efficient Reasoning by Structured Multi-Turn Decomposition
- URL: http://arxiv.org/abs/2505.19788v2
- Date: Thu, 05 Jun 2025 03:15:25 GMT
- Title: Done Is Better than Perfect: Unlocking Efficient Reasoning by Structured Multi-Turn Decomposition
- Authors: Zihao Zeng, Xuyao Huang, Boxiu Li, Hao Zhang, Zhijie Deng,
- Abstract summary: Large Reasoning Models (LRMs) are criticized for the excessively lengthy Chain-of-Thought (CoT) to derive the final answer.<n>This paper introduces Multi-Turn Decomposition (MinD) to decode conventional CoT into a sequence of explicit, structured, and turn-wise interactions.<n>MinD can achieve up to 70% reduction in both output token usage and time to first token (TTFT)
- Score: 11.858707687894757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Reasoning Models (LRMs) are criticized for the excessively lengthy Chain-of-Thought (CoT) to derive the final answer, suffering from high first-token and overall latency. Typically, the CoT of LRMs mixes multiple thinking units; each unit attempts to produce a candidate answer to the original query. Hence, a natural idea to improve efficiency is to reduce the unit number. Yet, the fact that the thinking units in vanilla CoT cannot be explicitly managed renders doing so challenging. This paper introduces Multi-Turn Decomposition (MinD) to decode conventional CoT into a sequence of explicit, structured, and turn-wise interactions to bridge the gap. In MinD, the model provides a multi-turn response to the query, where each turn embraces a thinking unit and yields a corresponding answer. The subsequent turns can reflect, verify, revise, or explore alternative approaches to both the thinking and answer parts of earlier ones. This not only makes the answer delivered more swiftly, but also enables explicit controls over the iterative reasoning process (i.e., users may halt or continue at any turn). We follow a supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm to realize MinD. We first rephrase the outputs of an LRM into multi-turn formats by prompting another LLM, and then tune the LRM with such data. Observing that the tuned model tends to consume even more tokens than the original one (probably due to that the multi-turn formats introduce additional answer tokens), we advocate leveraging RL algorithms like GRPO to prioritize correct outputs with fewer turns. Trained on the MATH dataset using R1-Distill models, MinD can achieve up to ~70% reduction in both output token usage and time to first token (TTFT), while maintaining competitive performance on reasoning benchmarks such as MATH-500, AIME24, AMC23, and GPQA-Diamond.
Related papers
- BadReasoner: Planting Tunable Overthinking Backdoors into Large Reasoning Models for Fun or Profit [12.189197763012409]
Large language models (LRMs) have emerged as a significant advancement in artificial intelligence.<n>In this paper, we identify an unexplored attack vector against LRMs, which we term "overthinking tunables"<n>We propose a novel tunable backdoor, which moves beyond simple on/off attacks to one where an attacker can precisely control the extent of the model's reasoning verbosity.
arXiv Detail & Related papers (2025-07-24T11:24:35Z) - ReCUT: Balancing Reasoning Length and Accuracy in LLMs via Stepwise Trails and Preference Optimization [16.51303604678232]
Reasoning Compression ThroUgh Stepwise Trials (ReCUT) is a novel method aimed at balancing the accuracy and length of reasoning trajectory.<n> Experimental results across multiple math reasoning datasets and backbone models demonstrate that ReCUT significantly reduces reasoning lengths by approximately 30-50%.
arXiv Detail & Related papers (2025-06-12T15:43:01Z) - What makes Reasoning Models Different? Follow the Reasoning Leader for Efficient Decoding [84.42056293290015]
We analyze the token-level misalignment between reasoning and non-reasoning models.<n>Motivated by the Local Misalignment Diminish, we propose FoReaL-Decoding.<n>On four popular math-reasoning benchmarks, FoReaL-Decoding reduces theoretical FLOPs by 30 to 50% and trims CoT length by up to 40%.
arXiv Detail & Related papers (2025-06-08T05:08:32Z) - From Token to Action: State Machine Reasoning to Mitigate Overthinking in Information Retrieval [22.35942074715463]
Chain-of-Thought (CoT) prompting enables complex reasoning in large language models (LLMs)<n>We propose State Machine Reasoning (SMR), a transition-based reasoning framework composed of discrete actions.<n> Experiments on the BEIR and BRIGHT benchmarks show that SMR improves retrieval performance (nDCG@10) by 3.4% while reducing token usage by 74.4%.
arXiv Detail & Related papers (2025-05-29T04:04:25Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - VeriThinker: Learning to Verify Makes Reasoning Model Efficient [52.74493506816969]
Large Reasoning Models excel at complex tasks using Chain-of-Thought (CoT) reasoning.<n>Their tendency to overthinking leads to unnecessarily lengthy reasoning chains.<n>We introduce VeriThinker, a novel approach for CoT compression.
arXiv Detail & Related papers (2025-05-23T14:17:56Z) - Think-RM: Enabling Long-Horizon Reasoning in Generative Reward Models [50.4652276723694]
Think-RM generates flexible, self-guided reasoning traces that support advanced capabilities.<n>Think-RM achieves state-of-the-art results on RM-Bench, outperforming both BT RM and vertically scaled GenRM by 8%.
arXiv Detail & Related papers (2025-05-22T05:56:11Z) - Thinkless: LLM Learns When to Think [57.857534644932194]
Reasoning Language Models, capable of extended chain-of-thought reasoning, have demonstrated remarkable performance on tasks requiring complex logical inference.<n>We propose Thinkless, a learnable framework that empowers an LLM to adaptively select between short-form and long-form reasoning.<n>On several benchmarks such as Minerva Algebra, MATH-500, and GSM8K, Thinkless is able to reduce the usage of long-chain thinking by 50% - 90%.
arXiv Detail & Related papers (2025-05-19T17:24:16Z) - Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling [90.86991492288487]
evaluating constraint on every token can be prohibitively expensive.<n> LCD can distort the global distribution over strings, sampling tokens based only on local information.<n>We show that our approach is superior to state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-07T18:30:18Z) - ReFT: Reasoning with Reinforced Fine-Tuning [9.80361828538909]
We propose a simple yet effective approach called Reinforced Fine-Tuning (ReFT) to enhance the generalizability of learning LLMs for reasoning.<n>ReFT first warmups the model with SFT, and then employs on-line reinforcement learning, specifically the PPO algorithm in this paper.<n>Experiments on GSM8K, MathQA, and SVAMP datasets show that ReFT significantly outperforms SFT.
arXiv Detail & Related papers (2024-01-17T04:43:21Z) - DCR: Divide-and-Conquer Reasoning for Multi-choice Question Answering with LLMs [9.561022942046279]
We propose Divide and Conquer Reasoning (DCR) to enhance the reasoning capability of large language models (LLMs)
We first categorize questions into two subsets based on confidence score ($mathcalCS$), which is estimated by statistical frequency of generated answers.
In particular, we first categorize questions into two subsets based on confidence score ($mathcalCS$), which is estimated by statistical frequency of generated answers.
arXiv Detail & Related papers (2024-01-10T14:38:46Z) - Training Chain-of-Thought via Latent-Variable Inference [30.21067593018967]
Large language models (LLMs) solve problems more accurately and interpretably when instructed to work out the answer step by step using a chain-of-thought'' prompt.
Naively combining CoT with supervised tuning requires supervision not just of the correct answers, but also of detailed rationales that lead to those answers.
We propose a fine-tuning strategy that tries to maximize the emphmarginal log-likelihood of generating a correct answer using CoT prompting.
arXiv Detail & Related papers (2023-11-28T17:47:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.