論文の概要: Exploring Consciousness in LLMs: A Systematic Survey of Theories, Implementations, and Frontier Risks
- arxiv url: http://arxiv.org/abs/2505.19806v1
- Date: Mon, 26 May 2025 10:40:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.361423
- Title: Exploring Consciousness in LLMs: A Systematic Survey of Theories, Implementations, and Frontier Risks
- Title(参考訳): LLMにおける意識を探る:理論・実装・フロンティアリスクの体系的調査
- Authors: Sirui Chen, Shuqin Ma, Shu Yu, Hanwang Zhang, Shengjie Zhao, Chaochao Lu,
- Abstract要約: 意識は人間の心の最も深い特徴の1つである。
大規模言語モデル(LLM)が前例のないペースで発展するにつれ、知性と意識に関する疑問がますます重要になっている。
- 参考スコア(独自算出の注目度): 46.93509559847712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consciousness stands as one of the most profound and distinguishing features of the human mind, fundamentally shaping our understanding of existence and agency. As large language models (LLMs) develop at an unprecedented pace, questions concerning intelligence and consciousness have become increasingly significant. However, discourse on LLM consciousness remains largely unexplored territory. In this paper, we first clarify frequently conflated terminologies (e.g., LLM consciousness and LLM awareness). Then, we systematically organize and synthesize existing research on LLM consciousness from both theoretical and empirical perspectives. Furthermore, we highlight potential frontier risks that conscious LLMs might introduce. Finally, we discuss current challenges and outline future directions in this emerging field. The references discussed in this paper are organized at https://github.com/OpenCausaLab/Awesome-LLM-Consciousness.
- Abstract(参考訳): 意識は人間の心の最も深く区別された特徴の1つであり、私たちの存在とエージェンシーに対する理解を根本的に形作っている。
大規模言語モデル(LLM)が前例のないペースで発展するにつれ、知性と意識に関する疑問がますます重要になっている。
しかし、LLMの意識に関する議論はほとんど未解決領域のままである。
本稿では,まず,頻繁に混在する用語(例えば,LLM意識,LLM意識)を明らかにした。
そこで我々は,LLM意識に関する既存の研究を理論的,経験的両面から体系的に整理し,合成する。
さらに、意識的なLSMがもたらす潜在的なフロンティアリスクを強調した。
最後に、現在の課題について論じ、この新興分野における今後の方向性について概説する。
本稿では、https://github.com/OpenCausaLab/Awesome-LLM-Consciousnessで紹介する。
関連論文リスト
- How Deep is Love in LLMs' Hearts? Exploring Semantic Size in Human-like Cognition [75.11808682808065]
本研究では,大言語モデル (LLM) が意味的サイズを理解する上で類似した傾向を示すかどうかを検討する。
以上の結果から,マルチモーダルトレーニングはLLMにとって人間的な理解を深める上で不可欠であることが示唆された。
最後に,LLMが実世界のWebショッピングシナリオにおいて,より大きなセマンティックサイズを持つ注目の見出しに影響されているかを検討する。
論文 参考訳(メタデータ) (2025-03-01T03:35:56Z) - A Perspective on Large Language Models, Intelligent Machines, and Knowledge Acquisition [0.6138671548064355]
大言語モデル(LLM)は「知識」を生成できることで知られている。
しかし、抽象概念と推論を理解するためのLLMと人間の能力の間には大きなギャップがある。
我々はこれらの問題を、人間の知識獲得とチューリングテストの哲学的な文脈で論じる。
論文 参考訳(メタデータ) (2024-08-13T03:25:49Z) - Knowledge Mechanisms in Large Language Models: A Survey and Perspective [88.51320482620679]
本稿では,知識利用と進化を含む新しい分類法から知識メカニズムの解析をレビューする。
LLMが学んだ知識、パラメトリック知識の脆弱性の理由、そして解決が難しい潜在的な暗黒知識(仮説)について論じる。
論文 参考訳(メタデータ) (2024-07-22T06:15:59Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
本研究では,Large Language Models(LLM)の能力とリスクについて検討する。
LLM内の単語関係の統計的パターンと、Martin Heidegger氏の概念である"ready-to-hand"と"present-at-hand"の間には、革新的な並列性がある。
以上の結果から, LLMには直接的説明推論と擬似論理推論の能力があるが, 真理的推論に乏しく, 創造的推論能力がないことが明らかとなった。
論文 参考訳(メタデータ) (2024-03-05T19:40:53Z) - I Think, Therefore I am: Benchmarking Awareness of Large Language Models
Using AwareBench [20.909504977779978]
大規模言語モデル(LLM)における認識を評価するために設計されたベンチマークであるAwareBenchを紹介する。
LLMにおける認識は、能力、使命、感情、文化、視点の5つの次元に分類する。
13個のLLMで実施した実験の結果,その大部分は,社会的知能を十分に発揮しながら,その能力とミッションを完全に認識することに苦慮していることがわかった。
論文 参考訳(メタデータ) (2024-01-31T14:41:23Z) - Deception Abilities Emerged in Large Language Models [0.0]
大規模言語モデル(LLM)は、現在、人間のコミュニケーションと日常の生活を備えた人工知能(AI)システムの最前線にある。
本研究は, GPT-4 などの最先端 LLM にそのような戦略が出現したが, 初期の LLM には存在しなかったことを明らかにする。
我々は、最先端のLLMが他のエージェントの誤った信念を理解し、誘導できることを示す一連の実験を行う。
論文 参考訳(メタデータ) (2023-07-31T09:27:01Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。