論文の概要: ESLM: Risk-Averse Selective Language Modeling for Efficient Pretraining
- arxiv url: http://arxiv.org/abs/2505.19893v1
- Date: Mon, 26 May 2025 12:23:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.411685
- Title: ESLM: Risk-Averse Selective Language Modeling for Efficient Pretraining
- Title(参考訳): ESLM: 効率的な事前学習のためのリスク・アバース選択型言語モデリング
- Authors: Melis Ilayda Bal, Volkan Cevher, Michael Muehlebach,
- Abstract要約: 大規模言語モデルの事前学習は計算集約的であるが、多くのトークンが学習にわずかに寄与し、非効率になる。
Selective Efficient Language Modelingは、オンライントークンレベルのバッチ選択を行うことで、トレーニング効率と分散ロバスト性を改善するリスク認識アルゴリズムである。
GPT-2プレトレーニング実験の結果、ESLMはベースラインに比べて複雑度と下流性能の両面を維持・改善しながら、トレーニングFLOPを著しく低減することが示された。
- 参考スコア(独自算出の注目度): 53.893792844055106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model pretraining is compute-intensive, yet many tokens contribute marginally to learning, resulting in inefficiency. We introduce Efficient Selective Language Modeling (ESLM), a risk-aware algorithm that improves training efficiency and distributional robustness by performing online token-level batch selection. ESLM leverages per-token statistics (e.g., entropy or loss) and applies value-at-risk thresholding to retain only the most informative tokens per batch. This data-centric mechanism reshapes the training loss, prioritizing high-risk tokens and eliminating redundant gradient computation. We frame ESLM as a bilevel game: the model competes with a masking adversary that selects worst-case token subsets under a constrained thresholding rule. In the loss-based setting, ESLM recovers conditional value-at-risk loss minimization, providing a principled connection to distributionally robust optimization. We extend our approach to Ada-ESLM, which adaptively tunes the selection confidence during training. Experiments on GPT-2 pretraining show that ESLM significantly reduces training FLOPs while maintaining or improving both perplexity and downstream performance compared to baselines. Our approach also scales across model sizes, pretraining corpora, and integrates naturally with knowledge distillation.
- Abstract(参考訳): 大規模言語モデルの事前学習は計算集約的であるが、多くのトークンが学習にわずかに寄与し、非効率になる。
本稿では,オンライントークンレベルのバッチ選択を行うことで,トレーニング効率と分散ロバスト性を向上させるリスク認識アルゴリズムであるESLMを紹介する。
ESLMは、トークンごとの統計(例えばエントロピーや損失)を活用し、リスクを負う閾値を適用して、バッチ毎の最も情報性の高いトークンのみを保持する。
このデータ中心のメカニズムは、トレーニング損失を軽減し、リスクの高いトークンを優先順位付けし、冗長な勾配計算を排除します。
モデルは、制約付きしきい値規則の下で最悪のトークンサブセットを選択するマスキング敵と競合する。
損失ベースの設定では、ESLMは条件付き値-リスク損失最小化を回復し、分散的に堅牢な最適化に原則化された接続を提供する。
我々はAda-ESLMにアプローチを拡張し、トレーニング中の選択信頼度を適応的に調整する。
GPT-2プレトレーニング実験の結果、ESLMはトレーニングFLOPを著しく低減し、ベースラインに比べて複雑度と下流性能の両方を維持または改善することが示された。
提案手法は, モデルサイズ, コーパスの事前学習, 知識蒸留と自然に統合する。
関連論文リスト
- Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods [69.36397993451742]
In this work introduced Context-aware Prompt Tuning (CPT) - ICL, PT, and adversarial attack。
入力および出力フォーマットのユニークな構造を考慮して、特定のコンテキストトークンを変更する。
敵の攻撃にインスパイアされた我々は、損失を最大化するのではなく、最小化に焦点をあてて、コンテキストに存在するラベルに基づいて入力を調整する。
論文 参考訳(メタデータ) (2024-10-22T17:45:47Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review(LFR)は、モデルの学習進捗に適応する動的トレーニングアプローチである。
LFRは、データブロック(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、データセットの困難な領域を再検討する。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRは一貫して低いパープレキシティと高い精度を達成した。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs [25.91643745340183]
大規模言語モデル(LLM)は、大量のテキストコーパスの事前学習を通じて、強い推論と記憶能力を示す。
これはプライバシーと著作権侵害のリスクを生じさせ、効率的な機械学習手法の必要性を強調している。
LLMの堅牢かつ効率的なアンラーニングを可能にする新しいフレームワークであるLoKUを提案する。
論文 参考訳(メタデータ) (2024-08-13T04:18:32Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
我々は,主に半教師あり学習の手法として,自己学習について研究している。
我々は,新しい不確かさを意識した自己学習フレームワークであるUPETを紹介する。
UPETは性能と効率の面で大幅に向上したことを示す。
論文 参考訳(メタデータ) (2023-10-19T02:18:29Z) - MC-BERT: Efficient Language Pre-Training via a Meta Controller [96.68140474547602]
大規模事前学習は計算コストが高い。
事前トレーニングを加速する初期の試みであるELECTRAは、各入力トークンがジェネレータに置き換えられたかどうかを予測する識別モデルを訓練している。
本稿では,MC-BERTというメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T09:22:19Z) - Self-Adaptive Training: beyond Empirical Risk Minimization [15.59721834388181]
余分な計算コストを伴わずにモデル予測により問題ラベルを動的に補正する新しいトレーニングアルゴリズムを提案する。
自己適応型トレーニングは、様々なレベルのノイズに対する一般化を著しく改善し、自然と敵対両方のトレーニングにおいて過度に適合する問題を緩和する。
CIFARとImageNetデータセットの実験は、我々のアプローチの有効性を2つのアプリケーションで検証する。
論文 参考訳(メタデータ) (2020-02-24T15:47:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。