論文の概要: EMAC+: Embodied Multimodal Agent for Collaborative Planning with VLM+LLM
- arxiv url: http://arxiv.org/abs/2505.19905v1
- Date: Mon, 26 May 2025 12:34:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.421359
- Title: EMAC+: Embodied Multimodal Agent for Collaborative Planning with VLM+LLM
- Title(参考訳): EMAC+:VLM+LLMを用いた協調計画のためのマルチモーダルエージェント
- Authors: Shuang Ao, Flora D. Salim, Simon Khan,
- Abstract要約: 我々は,LLMとVLMを協調的に統合するEmbodied Multimodal AgentであるEMAC+を紹介する。
既存の方法とは異なり、EMAC+は低レベルの視覚制御タスクを実行するVLMからのリアルタイムフィードバックを使用して、高レベルのテキストプランを動的に洗練する。
EMAC+は、ノイズの多い観察と効率的な学習に対して優れたタスクパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 8.3321872381107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although LLMs demonstrate proficiency in several text-based reasoning and planning tasks, their implementation in robotics control is constrained by significant deficiencies: (1) LLM agents are designed to work mainly with textual inputs rather than visual conditions; (2) Current multimodal agents treat LLMs as static planners, which separates their reasoning from environment dynamics, resulting in actions that do not take domain-specific knowledge into account; and (3) LLMs are not designed to learn from visual interactions, which makes it harder for them to make better policies for specific domains. In this paper, we introduce EMAC+, an Embodied Multimodal Agent that collaboratively integrates LLM and VLM via a bidirectional training paradigm. Unlike existing methods, EMAC+ dynamically refines high-level textual plans generated by an LLM using real-time feedback from a VLM executing low-level visual control tasks. We address critical limitations of previous models by enabling the LLM to internalize visual environment dynamics directly through interactive experience, rather than relying solely on static symbolic mappings. Extensive experimental evaluations on ALFWorld and RT-1 benchmarks demonstrate that EMAC+ achieves superior task performance, robustness against noisy observations, and efficient learning. We also conduct thorough ablation studies and provide detailed analyses of success and failure cases.
- Abstract(参考訳): 1) LLMエージェントは、視覚的条件ではなく、主にテキスト入力を扱うように設計されている;(2) 現在のマルチモーダルエージェントは、LLMエージェントを静的プランナーとして扱い、環境力学から推論を分離し、ドメイン固有の知識を考慮に入れないアクションをもたらす; 3) LLMは、視覚的相互作用から学ぶように設計されていないため、特定のドメインに対するより良いポリシーを作るのが難しくなる。
本稿では,双方向学習パラダイムを用いてLLMとVLMを協調的に統合するEMAC+について紹介する。
既存の方法とは異なり、EMAC+は低レベルの視覚制御タスクを実行するVLMからのリアルタイムフィードバックを使用して、LLMによって生成された高レベルのテキストプランを動的に洗練する。
我々は,静的なシンボリックマッピングのみに頼るのではなく,インタラクティブな体験を通じて視覚環境の動態を直接内在化することで,従来のモデルの限界に対処する。
ALFWorld と RT-1 ベンチマークの大規模な実験的評価は、EMAC+ が優れたタスク性能、ノイズ観測に対する堅牢性、効率的な学習を実現していることを示している。
また、徹底的なアブレーション研究を行い、成功事例と失敗事例を詳細に分析する。
関連論文リスト
- IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Benchは、多ラウンドの対話シナリオで大規模言語モデルを評価する新しいベンチマークである。
エージェント性能は、最終的な数値出力と人間由来のベースラインを比較して判断する。
最先端のコーディングエージェント(Claude-3.7-thinkingなど)でさえ50%のタスクを成功させ、シングルターンテストでは明らかでない制限を強調している。
論文 参考訳(メタデータ) (2025-05-23T09:37:52Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
自律型大規模言語モデル(LLM)エージェントを体系的に強化し、評価し、改善するためのガイムスタイルのフレームワーク。
MLE-Dojoは、現実的なエンジニアリングシナリオを反映した、多様でオープンなMLEタスクを慎重にキュレートする。
完全に実行可能な環境は、教師付き微調整と強化学習の両方を通して包括的なエージェントトレーニングをサポートする。
論文 参考訳(メタデータ) (2025-05-12T17:35:43Z) - VLM Q-Learning: Aligning Vision-Language Models for Interactive Decision-Making [45.02997774119763]
視覚言語モデル(VLM)は、大規模言語モデル(LLM)をマルチモーダルデータに拡張する。
我々の研究は、オフラインからオンラインへの強化学習(RL)の観点から、これらの課題にアプローチする。
論文 参考訳(メタデータ) (2025-05-06T04:51:57Z) - OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation [95.78870389271832]
現代のMLLMを開発するための標準的な慣行は、視覚エンコーダ(s)からLLMに特徴を供給し、自然言語を監督する訓練を行うことである。
目的とする視覚表現の集合からLLMの隠れ表現に知識を抽出する最初の手法であるOLA-VLMを提案する。
OLA-VLMは様々なベンチマークで平均マージンを2.5%向上させ,CV-BenchのDepthタスクでは8.7%向上した。
論文 参考訳(メタデータ) (2024-12-12T18:55:18Z) - Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training [48.455597568212944]
マルチモーダル・ミックス・オブ・エキスパート構造を用いて視覚専門家の集合をシームレスに統合するモノリシックMLLMであるMono-InternVLを提案する。
特に、EViPは、ノイズの多いデータから高品質なデータへの視覚的知識を完全に活用することを目的とした、視覚専門家のための進歩的な学習プロセスとして設計されている。
論文 参考訳(メタデータ) (2024-10-10T17:59:22Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
本稿では,言語モデルロールアウト(KALM)の知識エージェントを紹介する。
大規模言語モデル(LLM)から、オフラインの強化学習手法によってエージェントが容易に学習できる想像上のロールアウトの形で知識を抽出する。
未確認の目標を持つタスクの実行において46%の成功率を達成し、ベースラインメソッドによって達成された26%の成功率を大幅に上回る。
論文 参考訳(メタデータ) (2024-04-14T13:19:40Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - LgTS: Dynamic Task Sampling using LLM-generated sub-goals for
Reinforcement Learning Agents [10.936460061405157]
LgTS (LLM-Guided Teacher-Student Learning) を提案する。
提案手法では,提案したサブゴールを達成するための事前訓練されたポリシーも必要としない。
論文 参考訳(メタデータ) (2023-10-14T00:07:03Z) - Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach [31.6589518077397]
大規模言語モデル(LLM)は、大量のテキストデータセットから得られた膨大な量の世界の知識を符号化する。
LLMは、高レベルな命令を提供することで、複雑なシーケンシャルな意思決定タスクを解決するための実施エージェントを支援することができる。
本研究では,高レベルの命令に対してLLMを問合せする必要がある場合に学習する強化学習ベースのアプローチである When2Ask を提案する。
論文 参考訳(メタデータ) (2023-06-06T11:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。