論文の概要: Understanding Generalization in Diffusion Models via Probability Flow Distance
- arxiv url: http://arxiv.org/abs/2505.20123v1
- Date: Mon, 26 May 2025 15:23:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.564203
- Title: Understanding Generalization in Diffusion Models via Probability Flow Distance
- Title(参考訳): 確率フロー距離による拡散モデルの一般化の理解
- Authors: Huijie Zhang, Zijian Huang, Siyi Chen, Jinfan Zhou, Zekai Zhang, Peng Wang, Qing Qu,
- Abstract要約: 分布一般化を測定するために確率フロー距離(texttPFD$)を導入する。
拡散モデルにおけるいくつかの重要な一般化挙動を経験的に明らかにする。
- 参考スコア(独自算出の注目度): 7.675910526644439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have emerged as a powerful class of generative models, capable of producing high-quality samples that generalize beyond the training data. However, evaluating this generalization remains challenging: theoretical metrics are often impractical for high-dimensional data, while no practical metrics rigorously measure generalization. In this work, we bridge this gap by introducing probability flow distance ($\texttt{PFD}$), a theoretically grounded and computationally efficient metric to measure distributional generalization. Specifically, $\texttt{PFD}$ quantifies the distance between distributions by comparing their noise-to-data mappings induced by the probability flow ODE. Moreover, by using $\texttt{PFD}$ under a teacher-student evaluation protocol, we empirically uncover several key generalization behaviors in diffusion models, including: (1) scaling behavior from memorization to generalization, (2) early learning and double descent training dynamics, and (3) bias-variance decomposition. Beyond these insights, our work lays a foundation for future empirical and theoretical studies on generalization in diffusion models.
- Abstract(参考訳): 拡散モデルは、トレーニングデータを超えて一般化する高品質なサンプルを生成することができる強力な生成モデルのクラスとして登場した。
しかし、この一般化を評価することは困難であり、理論的なメトリクスは高次元データには実用的ではないが、実際的なメトリクスは厳密に一般化を測ることはない。
本研究では,確率フロー距離 (\texttt{PFD}$) を導入することにより,このギャップを埋める。
具体的には、$\texttt{PFD}$は、確率フローODEによって誘導されるノイズ-データマッピングを比較することで、分布間の距離を定量化する。
さらに,(1)記憶から一般化へのスケーリング行動,(2)早期学習と二重降下訓練のダイナミクス,(3)バイアス分散の分解など,拡散モデルにおけるいくつかの重要な一般化挙動を経験的に明らかにした。
これらの知見の他に、我々の研究は拡散モデルにおける一般化に関する将来の経験的および理論的研究の基礎を築いた。
関連論文リスト
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では,条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより,ギャップを埋める。
論文 参考訳(メタデータ) (2024-03-18T17:08:24Z) - On the Generalization Properties of Diffusion Models [31.067038651873126]
この研究は拡散モデルの一般化特性を包括的に理論的に探求することを目的としている。
我々は、スコアベース拡散モデルのトレーニング力学と合わせて、タンデムで進化する一般化ギャップの理論的推定値を確立する。
我々は定量分析をデータ依存のシナリオに拡張し、対象の分布を密度の連続として表現する。
論文 参考訳(メタデータ) (2023-11-03T09:20:20Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - Generalization and Memorization: The Bias Potential Model [9.975163460952045]
生成モデルと密度推定器は、関数の学習モデルとは全く異なる振る舞いをする。
バイアスポテンシャルモデルでは、早期停止が採用された場合、次元非依存の一般化精度が達成可能であることを示す。
長期的には、モデルはサンプルを記憶するか、分岐させる。
論文 参考訳(メタデータ) (2020-11-29T04:04:54Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。