論文の概要: Predictive Performance of Deep Quantum Data Re-uploading Models
- arxiv url: http://arxiv.org/abs/2505.20337v1
- Date: Sat, 24 May 2025 13:11:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.183927
- Title: Predictive Performance of Deep Quantum Data Re-uploading Models
- Title(参考訳): 深部量子データ再アップロードモデルの予測性能
- Authors: Xin Wang, Han-Xiao Tao, Re-Bing Wu,
- Abstract要約: 本研究では,データ再アップロードモデルにディープエンコーディング層を用いる場合の予測性能の基本的な制限を明らかにする。
理論的には、限定量子データ再アップロードモデルで高次元データを処理する場合、予測性能は徐々にランダムなゲスティングレベルに低下する。
- 参考スコア(独自算出の注目度): 4.852613028421959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning models incorporating data re-uploading circuits have garnered significant attention due to their exceptional expressivity and trainability. However, their ability to generate accurate predictions on unseen data, referred to as the predictive performance, remains insufficiently investigated. This study reveals a fundamental limitation in predictive performance when deep encoding layers are employed within the data re-uploading model. Concretely, we theoretically demonstrate that when processing high-dimensional data with limited-qubit data re-uploading models, their predictive performance progressively degenerates to near random-guessing levels as the number of encoding layers increases. In this context, the repeated data uploading cannot mitigate the performance degradation. These findings are validated through experiments on both synthetic linearly separable datasets and real-world datasets. Our results demonstrate that when processing high-dimensional data, the quantum data re-uploading models should be designed with wider circuit architectures rather than deeper and narrower ones.
- Abstract(参考訳): データ再ロード回路を組み込んだ量子機械学習モデルは、その異常な表現性とトレーニング容易性のために大きな注目を集めている。
しかし、予測性能と呼ばれる未確認データに基づいて正確な予測を生成する能力は、まだ十分に研究されていない。
本研究では,データ再アップロードモデルにディープエンコーディング層を用いる場合の予測性能の基本的な制限を明らかにする。
具体的には,制限量子データ再アップロードモデルを用いて高次元データを処理する場合,符号化層数が増加するにつれて,その予測性能がほぼランダムゲスティングレベルに徐々に低下することを示す。
この文脈では、繰り返しアップロードされるデータは、パフォーマンスの劣化を軽減することはできない。
これらの結果は、合成線形分離可能なデータセットと実世界のデータセットの両方の実験を通じて検証される。
その結果、高次元データを処理する場合、量子データ再ロードモデルは、より深く狭いものではなく、より広い回路アーキテクチャで設計されるべきであることが示された。
関連論文リスト
- A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops [55.07063067759609]
高品質なデータは大規模な生成モデルのトレーニングには不可欠だが、オンラインで利用可能な実際のデータの膨大な蓄積はほとんど枯渇している。
モデルは、さらなるトレーニングのために独自のデータを生成し、自己消費訓練ループ(STL)を形成する。
一部のモデルは劣化または崩壊するが、他のモデルはこれらの失敗をうまく回避し、理論的な理解にかなりのギャップを残している。
論文 参考訳(メタデータ) (2025-02-26T06:18:13Z) - Computationally and Memory-Efficient Robust Predictive Analytics Using Big Data [0.0]
本研究では、データ不確実性、ストレージ制限、ビッグデータを用いた予測データ駆動モデリングの課題をナビゲートする。
本稿では,ロバスト主成分分析(RPCA)を有効ノイズ低減と外乱除去に利用し,最適センサ配置(OSP)を効率的なデータ圧縮・記憶に活用する。
論文 参考訳(メタデータ) (2024-03-27T22:39:08Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
事前訓練されたコードのモデルは、コード理解と生成タスクに人気がある。
このようなモデルは大きい傾向があり、訓練データの総量を必要とする。
人工的に注入されたバグのある関数など、はるかに大きくてもより現実的なデータセットを持つモデルをトレーニングすることが一般的になった。
このようなデータで訓練されたモデルは、実際のプログラムでは性能が劣りながら、同様のデータでのみうまく機能する傾向にある。
論文 参考訳(メタデータ) (2023-11-02T01:51:43Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
転送学習は、大規模な"上流"データセットで事前訓練されたモデルが、"下流"データセットで良い結果を得るために適応される古典的なパラダイムである。
本研究では、ImageNetデータセットでトレーニングされた畳み込みニューラルネットワーク(CNN)のコンテキストにおいて、この現象を詳細に調査する。
スパースモデルでは, 高空間であっても, 高密度モデルの転送性能にマッチしたり, 性能に優れることを示す。
論文 参考訳(メタデータ) (2021-11-26T11:58:51Z) - Improving Neural Networks for Time Series Forecasting using Data
Augmentation and AutoML [0.0]
本稿では,ニューラルネットワークの性能を大幅に向上させるデータ拡張手法を提案する。
これは、Neural Architecture Searchのような自動機械学習技術を組み合わせることで、与えられた時系列に最適なニューラルネットワークを見つけるのに役立つことを示している。
論文 参考訳(メタデータ) (2021-03-02T19:20:49Z) - Synthesizing Irreproducibility in Deep Networks [2.28438857884398]
現代のディープネットワークは非生産性に苦しむ(非決定性または不特定化とも呼ばれる)
単一の非線形性や非常に単純なデータやモデルであっても、不再現性が生じることを示す。
モデルの複雑さと非線形性の選択は、深いモデルを再現不能にする上で重要な役割を果たす。
論文 参考訳(メタデータ) (2021-02-21T21:51:28Z) - On the performance of deep learning models for time series
classification in streaming [0.0]
この研究は、データストリーミング分類のための様々なタイプのディープアーキテクチャのパフォーマンスを評価することである。
複数の時系列データセット上で,多層パーセプトロン,リカレント,畳み込み,時間的畳み込みニューラルネットワークなどのモデルを評価する。
論文 参考訳(メタデータ) (2020-03-05T11:41:29Z) - Forecasting Industrial Aging Processes with Machine Learning Methods [0.0]
我々は、従来のステートレスモデルとより複雑なリカレントニューラルネットワークを比較して、幅広いデータ駆動モデルを評価する。
以上の結果から,リカレントモデルでは,より大きなデータセットでトレーニングした場合,ほぼ完璧な予測が得られた。
論文 参考訳(メタデータ) (2020-02-05T13:06:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。