Quantum computation of hadron scattering in a lattice gauge theory
- URL: http://arxiv.org/abs/2505.20408v1
- Date: Mon, 26 May 2025 18:00:49 GMT
- Title: Quantum computation of hadron scattering in a lattice gauge theory
- Authors: Zohreh Davoudi, Chung-Chun Hsieh, Saurabh V. Kadam,
- Abstract summary: We present a digital quantum computation of two-hadron scattering in a $Z$ lattice gauge theory in 1+1 dimensions.<n>We prepare well-separated single-particle wave packets with desired momentum-space wavefunctions, and simulate their collision through digitized time evolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a digital quantum computation of two-hadron scattering in a $Z_2$ lattice gauge theory in 1+1 dimensions. We prepare well-separated single-particle wave packets with desired momentum-space wavefunctions, and simulate their collision through digitized time evolution. Multiple hadronic wave packets can be produced using the efficient, systematically improvable algorithm of this work, achieving high fidelity with the target initial state. Specifically, employing a trapped-ion quantum computer (IonQ Forte), we prepare up to three meson wave packets using 11 and 27 system qubits, and simulate collision dynamics of two meson wave packets for the smaller system. Results for local observables are consistent with numerical simulations at early times, but decoherence effects limit evolution into long times. We demonstrate the critical role of high-fidelity initial states for precision measurements of state-sensitive observables, such as $S$-matrix elements. Our work establishes the potential of quantum computers in simulating hadron-scattering processes in strongly interacting gauge theories.
Related papers
- Towards Quantum Simulation of Meson Scattering in a Z2 Lattice Gauge Theory [0.0]
We investigate meson scattering in a (1+1)-dimensional Z2 lattice gauge theory with staggered fermions.<n>We construct mesonic wave packets using a quantum subspace expansion (QSE) approach to obtain high-fidelity meson creation operators.<n>Our results demonstrate the feasibility of simulating inelastic meson scattering on near-term quantum devices.
arXiv Detail & Related papers (2025-05-27T14:19:53Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Scattering wave packets of hadrons in gauge theories: Preparation on a quantum computer [0.0]
In this work, we construct a wave-packet creation operator directly in the interacting theory to circumvent adiabatic evolution.
We show that interacting mesonic wave packets can be created efficiently and accurately using digital quantum algorithms.
The fidelities agree well with classical benchmark calculations after employing a simple symmetry-based noise-mitigation technique.
arXiv Detail & Related papers (2024-02-01T18:30:10Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Large-Scale $2+1$D $\mathrm{U}(1)$ Gauge Theory with Dynamical Matter in
a Cold-Atom Quantum Simulator [3.1192594881563127]
A major driver of quantum-simulator technology is the prospect of probing high-energy phenomena in synthetic quantum matter setups at a high level of control and tunability.
Here, we propose an experimentally feasible realization of a large-scale $2+1$D $mathrmU(1)$ gauge theory with dynamical matter and gauge fields in a cold-atom quantum simulator with spinless bosons.
arXiv Detail & Related papers (2022-11-02T18:00:00Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Gutzwiller wave function on a digital quantum computer [0.0]
We introduce the Gutzwiller Wave Function (GWF) within the context of the digital quantum simulation of the Fermi-Hubbard model.
In the first, the noninteracting state associated with the $U = 0$ limit of the model is prepared.
In the second, the non-unitary Gutzwiller projection that selectively removes states with doubly-occupied sites from the wave function is performed.
arXiv Detail & Related papers (2021-03-29T09:20:51Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Holographic quantum algorithms for simulating correlated spin systems [0.0]
We present a suite of "holographic" quantum algorithms for efficient ground-state preparation and dynamical evolution of correlated spin-systems.
The algorithms exploit the equivalence between matrix-product states (MPS) and quantum channels, along with partial measurement and qubit re-use.
As a demonstration of the potential resource savings, we implement a holoVQE simulation of the antiferromagnetic Heisenberg chain on a trapped-ion quantum computer.
arXiv Detail & Related papers (2020-05-06T18:00:01Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.