Reconceptualizing Smart Microscopy: From Data Collection to Knowledge Creation by Multi-Agent Integration
- URL: http://arxiv.org/abs/2505.20466v1
- Date: Mon, 26 May 2025 19:02:14 GMT
- Title: Reconceptualizing Smart Microscopy: From Data Collection to Knowledge Creation by Multi-Agent Integration
- Authors: P. S. Kesavan, Pontus Nordenfelt,
- Abstract summary: We introduce a theoretical framework that reconceptualizes smart microscopy as a partner in scientific investigation.<n>Our framework provides a roadmap for building microscopy systems that go beyond automation to actively support hypothesis generation, insight discovery, and theory development.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Smart microscopy represents a paradigm shift in biological imaging, moving from passive observation tools to active collaborators in scientific inquiry. Enabled by advances in automation, computational power, and artificial intelligence, these systems are now capable of adaptive decision-making and real-time experimental control. Here, we introduce a theoretical framework that reconceptualizes smart microscopy as a partner in scientific investigation. Central to our framework is the concept of the 'epistemic-empirical divide' in cellular investigation-the gap between what is observable (empirical domain) and what must be understood (epistemic domain). We propose six core design principles: epistemic-empirical awareness, hierarchical context integration, an evolution from detection to perception, adaptive measurement frameworks, narrative synthesis capabilities, and cross-contextual reasoning. Together, these principles guide a multi-agent architecture designed to align empirical observation with the goals of scientific understanding. Our framework provides a roadmap for building microscopy systems that go beyond automation to actively support hypothesis generation, insight discovery, and theory development, redefining the role of scientific instruments in the process of knowledge creation.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI [98.19195693735487]
We propose the paradigm of Intelligent Science Laboratories (ISLs)<n>ISLs are a multi-layered, closed-loop framework that deeply integrates cognitive and embodied intelligence.<n>We argue that such systems are essential for overcoming the current limitations of scientific discovery.
arXiv Detail & Related papers (2025-06-24T13:31:44Z) - Nature's Insight: A Novel Framework and Comprehensive Analysis of Agentic Reasoning Through the Lens of Neuroscience [11.174550573411008]
We propose a novel neuroscience-inspired framework for agentic reasoning.<n>We apply this framework to systematically classify and analyze existing AI reasoning methods.<n>We propose new neural-inspired reasoning methods, analogous to chain-of-thought prompting.
arXiv Detail & Related papers (2025-05-07T14:25:46Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [132.77459963706437]
This book provides a comprehensive overview, framing intelligent agents within modular, brain-inspired architectures.<n>It explores self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities.<n>It also examines the collective intelligence emerging from agent interactions, cooperation, and societal structures.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Rethinking Cognition: Morphological Info-Computation and the Embodied Paradigm in Life and Artificial Intelligence [1.14219428942199]
This study aims to place Lorenzo Magnanis Eco-Cognitive Computationalism within the broader context of current work on information, computation, and cognition.<n>We model cognition as a web of concurrent morphological computations, driven by processes of self-assembly, self-organisation, and autopoiesis across physical, chemical, and biological domains.
arXiv Detail & Related papers (2024-12-01T10:04:53Z) - Causal Representation Learning from Multimodal Biomedical Observations [57.00712157758845]
We develop flexible identification conditions for multimodal data and principled methods to facilitate the understanding of biomedical datasets.<n>Key theoretical contribution is the structural sparsity of causal connections between modalities.<n>Results on a real-world human phenotype dataset are consistent with established biomedical research.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) is a multi-agent system designed to mimic the teamwork inherent in scientific research.<n>VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas.<n>We show that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas.
arXiv Detail & Related papers (2024-10-12T07:16:22Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding.
We present SciAgents, an approach that leverages three core concepts.
The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties.
Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a swarm of intelligence' similar to biological systems.
arXiv Detail & Related papers (2024-09-09T12:25:10Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - Closing the Loop: How Semantic Closure Enables Open-Ended Evolution [0.5755004576310334]
This manuscript explores the evolutionary emergence of semantic closure.<n>It integrates concepts from relational biology, physical biosemiotics, and ecological psychology into a unified computational enactivism framework.
arXiv Detail & Related papers (2024-04-05T19:35:38Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
We propose a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning.
We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.
arXiv Detail & Related papers (2020-04-11T21:02:45Z) - A Neurocomputational Account of Flexible Goal-directed Cognition and
Consciousness: The Goal-Aligning Representation Internal Manipulation Theory
(GARIM) [0.9669369645900444]
Goal-directed manipulation of representations is a key element of human flexible behaviour.
GarIM theory integrates key aspects of the main theories of consciousness into the functional neuro-computational framework of goal-directed behaviour.
Proposal has implications for experimental studies on consciousness and clinical aspects of conscious goal-directed behaviour.
arXiv Detail & Related papers (2019-12-31T18:45:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.