BrainStratify: Coarse-to-Fine Disentanglement of Intracranial Neural Dynamics
- URL: http://arxiv.org/abs/2505.20480v1
- Date: Mon, 26 May 2025 19:36:39 GMT
- Title: BrainStratify: Coarse-to-Fine Disentanglement of Intracranial Neural Dynamics
- Authors: Hui Zheng, Hai-Teng Wang, Yi-Tao Jing, Pei-Yang Lin, Han-Qing Zhao, Wei Chen, Peng-Hu Wei, Yong-Zhi Shan, Guo-Guang Zhao, Yun-Zhe Liu,
- Abstract summary: Decoding speech directly from neural activity is a central goal in brain-computer interface (BCI) research.<n>In recent years, exciting advances have been made through the growing use of intracranial field potential recordings, such as stereo-ElectroEncephaloGraphy (sEEG) and ElectroCorticoGraphy (ECoG)<n>These neural signals capture rich population-level activity but present key challenges: (i) task-relevant neural signals are sparsely distributed across sEEG electrodes, and (ii) they are often entangled with task-irrelevant neural signals in both sEEG and ECo
- Score: 8.36470471250669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decoding speech directly from neural activity is a central goal in brain-computer interface (BCI) research. In recent years, exciting advances have been made through the growing use of intracranial field potential recordings, such as stereo-ElectroEncephaloGraphy (sEEG) and ElectroCorticoGraphy (ECoG). These neural signals capture rich population-level activity but present key challenges: (i) task-relevant neural signals are sparsely distributed across sEEG electrodes, and (ii) they are often entangled with task-irrelevant neural signals in both sEEG and ECoG. To address these challenges, we introduce a unified Coarse-to-Fine neural disentanglement framework, BrainStratify, which includes (i) identifying functional groups through spatial-context-guided temporal-spatial modeling, and (ii) disentangling distinct neural dynamics within the target functional group using Decoupled Product Quantization (DPQ). We evaluate BrainStratify on two open-source sEEG datasets and one (epidural) ECoG dataset, spanning tasks like vocal production and speech perception. Extensive experiments show that BrainStratify, as a unified framework for decoding speech from intracranial neural signals, significantly outperforms previous decoding methods. Overall, by combining data-driven stratification with neuroscience-inspired modularity, BrainStratify offers a robust and interpretable solution for speech decoding from intracranial recordings.
Related papers
- CSBrain: A Cross-scale Spatiotemporal Brain Foundation Model for EEG Decoding [57.90382885533593]
We propose a Cross-scale Spatiotemporal Brain foundation model for generalized decoding EEG signals.<n>We show that CSBrain consistently outperforms task-specific and foundation model baselines.<n>These results establish cross-scale modeling as a key inductive bias and position CSBrain as a robust backbone for future brain-AI research.
arXiv Detail & Related papers (2025-06-29T03:29:34Z) - Neuro2Semantic: A Transfer Learning Framework for Semantic Reconstruction of Continuous Language from Human Intracranial EEG [11.531598524209969]
We introduce Neuro2Semantic, a novel framework that reconstructs the semantic content of perceived speech from intracranial EEG (iEEG) recordings.<n>Our approach consists of two phases: first, an LSTM-based adapter aligns neural signals with pre-trained text embeddings; second, a corrector module generates continuous, natural text directly from these aligned embeddings.<n>Neuro2Semantic achieves strong performance with as little as 30 minutes of neural data, outperforming a recent state-of-the-art method in low-data settings.
arXiv Detail & Related papers (2025-05-31T04:17:19Z) - Towards Unified Neural Decoding with Brain Functional Network Modeling [34.13766828046489]
We present Multi-individual Brain Region-Aggregated Network (MIBRAIN), a neural decoding framework.<n>MIBRAIN constructs a whole functional brain network model by integrating intracranial neurophysiological recordings across multiple individuals.<n>Our framework paves the way for robust neural decoding across individuals and offers insights for practical clinical applications.
arXiv Detail & Related papers (2025-05-30T12:10:37Z) - Decoding Phone Pairs from MEG Signals Across Speech Modalities [0.4054486015338004]
We investigated magnetoencephalography signals to decode phones from brain activity during speech production and perception tasks.<n>Our results demonstrate significantly higher decoding accuracy during speech production compared to passive listening and playback modalities.
arXiv Detail & Related papers (2025-05-21T10:31:34Z) - BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [50.76802709706976]
This paper proposes Brain Omni, the first brain foundation model that generalises across heterogeneous EEG and MEG recordings.<n>To unify diverse data sources, we introduce BrainTokenizer, the first tokenizer that quantises neural brain activity into discrete representations.<n>A total of 1,997 hours of EEG and 656 hours of MEG data are curated and standardised from publicly available sources for pretraining.
arXiv Detail & Related papers (2025-05-18T14:07:14Z) - sEEG-based Encoding for Sentence Retrieval: A Contrastive Learning Approach to Brain-Language Alignment [8.466223794246261]
We present SSENSE, a contrastive learning framework that projects single-subject stereo-electroencephalography (sEEG) signals into the sentence embedding space of a frozen CLIP model.<n>We evaluate our method on time-aligned sEEG and spoken transcripts from a naturalistic movie-watching dataset.
arXiv Detail & Related papers (2025-04-20T03:01:42Z) - neuro2voc: Decoding Vocalizations from Neural Activity [3.1913357260723303]
This master project investigates experimental methods for decoding zebra finch motor outputs.<n>XGBoost with SHAP analysis trained on spike rates revealed neuronal interaction patterns crucial for syllable classification.<n>A combined contrastive learning-VAE framework successfully generated spectrograms from binned neural data.
arXiv Detail & Related papers (2025-02-02T11:09:31Z) - Du-IN: Discrete units-guided mask modeling for decoding speech from Intracranial Neural signals [5.283718601431859]
Invasive brain-computer interfaces with Electrocorticography (ECoG) have shown promise for high-performance speech decoding in medical applications.
We developed the Du-IN model, which extracts contextual embeddings based on region-level tokens through discrete codex-guided mask modeling.
Our model achieves state-of-the-art performance on the 61-word classification task, surpassing all baselines.
arXiv Detail & Related papers (2024-05-19T06:00:36Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.