E2E Process Automation Leveraging Generative AI and IDP-Based Automation Agent: A Case Study on Corporate Expense Processing
- URL: http://arxiv.org/abs/2505.20733v1
- Date: Tue, 27 May 2025 05:21:08 GMT
- Title: E2E Process Automation Leveraging Generative AI and IDP-Based Automation Agent: A Case Study on Corporate Expense Processing
- Authors: Cheonsu Jeong, Seongmin Sim, Hyoyoung Cho, Sungsu Kim, Byounggwan Shin,
- Abstract summary: This paper presents an intelligent work automation approach in the context of contemporary digital transformation.<n>It integrates generative AI and Intelligent Document Processing technologies with an Automation Agent to realize End-to-End (E2E) automation of corporate financial expense processing tasks.
- Score: 1.5728609542259502
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents an intelligent work automation approach in the context of contemporary digital transformation by integrating generative AI and Intelligent Document Processing (IDP) technologies with an Automation Agent to realize End-to-End (E2E) automation of corporate financial expense processing tasks. While traditional Robotic Process Automation (RPA) has proven effective for repetitive, rule-based simple task automation, it faces limitations in handling unstructured data, exception management, and complex decision-making. This study designs and implements a four-stage integrated process comprising automatic recognition of supporting documents such as receipts via OCR/IDP, item classification based on a policy-driven database, intelligent exception handling supported by generative AI (large language models, LLMs), and human-in-the-loop final decision-making with continuous system learning through an Automation Agent. Applied to a major Korean enterprise (Company S), the system demonstrated quantitative benefits including over 80% reduction in processing time for paper receipt expense tasks, decreased error rates, and improved compliance, as well as qualitative benefits such as enhanced accuracy and consistency, increased employee satisfaction, and data-driven decision support. Furthermore, the system embodies a virtuous cycle by learning from human judgments to progressively improve automatic exception handling capabilities. Empirically, this research confirms that the organic integration of generative AI, IDP, and Automation Agents effectively overcomes the limitations of conventional automation and enables E2E automation of complex corporate processes. The study also discusses potential extensions to other domains such as accounting, human resources, and procurement, and proposes future directions for AI-driven hyper-automation development.
Related papers
- FinRobot: Generative Business Process AI Agents for Enterprise Resource Planning in Finance [6.494553545846438]
We present the first AI-native framework for ERP systems, introducing a novel architecture of Generative Business Process AI Agents.<n>The proposed system integrates generative AI with business process modeling and multi-agent orchestration, enabling end-to-end automation.<n>We show that GBPAs achieve up to 40% reduction in processing time, 94% drop in error rate, and improved regulatory compliance.
arXiv Detail & Related papers (2025-06-02T08:22:28Z) - AI-Enhanced Business Process Automation: A Case Study in the Insurance Domain Using Object-Centric Process Mining [0.7124736158080938]
This paper presents a case study from the insurance sector, where an LLM was deployed to automate the identification of claim parts.<n>We apply Object-Centric Process Mining (OCPM) to assess the impact of AI-driven automation on process scalability.<n>Our findings indicate that while LLMs significantly enhance operational capacity, they also introduce new process dynamics that require further refinement.
arXiv Detail & Related papers (2025-04-24T06:43:29Z) - From Words to Workflows: Automating Business Processes [0.2796197251957245]
The limitations of Robotic Process Automation (RPA) have become apparent.<n>Recent advancements in Artificial Intelligence (AI) have paved the way for Intelligent Automation (IA)<n>This paper introduces Text2Workflow, a novel method that automatically generates from natural language user requests.
arXiv Detail & Related papers (2024-12-04T16:34:35Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
We introduce AutoPT, an automated penetration testing agent based on the principle of PSM driven by LLMs.
Our results show that AutoPT outperforms the baseline framework ReAct on the GPT-4o mini model.
arXiv Detail & Related papers (2024-11-02T13:24:30Z) - Assessing the Performance of Human-Capable LLMs -- Are LLMs Coming for Your Job? [0.0]
SelfScore is a benchmark designed to assess the performance of automated Large Language Model (LLM) agents on help desk and professional consultation tasks.
The benchmark evaluates agents on problem complexity and response helpfulness, ensuring transparency and simplicity in its scoring system.
The study raises concerns about the potential displacement of human workers, especially in areas where AI technologies excel.
arXiv Detail & Related papers (2024-10-05T14:37:35Z) - A Formal Model for Artificial Intelligence Applications in Automation Systems [41.19948826527649]
This paper proposes a formal model using standards to provide clear and structured documentation of AI applications in automation systems.
The proposed information model for artificial intelligence in automation systems (AIAS) utilizes design patterns to map and link various aspects of automation systems and AI software.
arXiv Detail & Related papers (2024-07-03T15:05:32Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
Large Language Models (LLMs) have emerged human-like intelligence.
This paper introduces Agentic Process Automation (APA), a groundbreaking automation paradigm using LLM-based agents for advanced automation.
We then instantiate ProAgent, an agent designed to craft from human instructions and make intricate decisions by coordinating specialized agents.
arXiv Detail & Related papers (2023-11-02T14:32:16Z) - A Model for Calculating Cost of Applying Electronic Governance and
Robotic Process Automation to a Distributed Management System [5.439020425819001]
We present a mathematical model for calculating the cost of accomplishing a task by applying eGov and RPA in a Distributed Management system.
This model is one of the first of its kind, and is expected to spark further research on cost analysis for organizational efficiency.
arXiv Detail & Related papers (2023-10-02T00:15:46Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Automated Machine Learning: A Case Study on Non-Intrusive Appliance Load Monitoring [81.06807079998117]
We propose a novel approach to enable Automated Machine Learning (AutoML) for Non-Intrusive Appliance Load Monitoring (NIALM)<n>NIALM offers a cost-effective alternative to smart meters for measuring the energy consumption of electric devices and appliances.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Induction and Exploitation of Subgoal Automata for Reinforcement
Learning [75.55324974788475]
We present ISA, an approach for learning and exploiting subgoals in episodic reinforcement learning (RL) tasks.
ISA interleaves reinforcement learning with the induction of a subgoal automaton, an automaton whose edges are labeled by the task's subgoals.
A subgoal automaton also consists of two special states: a state indicating the successful completion of the task, and a state indicating that the task has finished without succeeding.
arXiv Detail & Related papers (2020-09-08T16:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.