論文の概要: Stereo Radargrammetry Using Deep Learning from Airborne SAR Images
- arxiv url: http://arxiv.org/abs/2505.20876v2
- Date: Wed, 28 May 2025 09:12:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 12:33:41.776972
- Title: Stereo Radargrammetry Using Deep Learning from Airborne SAR Images
- Title(参考訳): 空中SAR画像からの深層学習を用いたステレオレーダグラム計測
- Authors: Tatsuya Sasayama, Shintaro Ito, Koichi Ito, Takafumi Aoki,
- Abstract要約: 空中合成開口レーダ(SAR)画像からの深層学習を用いたステレオレーダグラム法を提案する。
深層学習に基づく手法は、幾何学的画像変調に支障をきたさないと考えられている。
我々は,SAR画像データセットを作成し,深層学習に基づく画像対応手法の微調整を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images. Deep learning-based methods are considered to suffer less from geometric image modulation, while there is no public SAR image dataset used to train such methods. We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method. The proposed method suppresses the degradation of image quality by pixel interpolation without ground projection of the SAR image and divides the SAR image into patches for processing, which makes it possible to apply deep learning. Through a set of experiments, we demonstrate that the proposed method exhibits a wider range and more accurate elevation measurements compared to conventional methods.
- Abstract(参考訳): 本稿では,空中合成開口レーダ(SAR)画像からの深層学習を用いたステレオレーダグラム法を提案する。
深層学習に基づく手法は幾何的な画像変調に支障をきたさないと考えられるが、そのような手法を訓練するのに使われるパブリックなSAR画像データセットは存在しない。
我々は,SAR画像データセットを作成し,深層学習に基づく画像対応手法の微調整を行う。
提案手法は,SAR画像の接地投影を伴わない画素補間による画質劣化を抑制し,SAR画像を処理用パッチに分割することにより,ディープラーニングの適用を可能にする。
実験により,提案手法は従来手法よりも広い範囲と高精度な標高測定が可能であることを実証した。
関連論文リスト
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - PolMERLIN: Self-Supervised Polarimetric Complex SAR Image Despeckling
with Masked Networks [2.580765958706854]
脱スペックリングは合成開口レーダ(SAR)画像の品質向上に重要なノイズ低減タスクである。
既存の方法は単一偏光画像のみを扱うため、現代の衛星が捉えた多重偏光画像は扱えない。
本稿では,分極関係を利用したチャネルマスキング手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T07:06:36Z) - SAR Despeckling via Regional Denoising Diffusion Probabilistic Model [6.154796320245652]
生成モデルに基づく領域分割拡散確率モデル(R-DDPM)
本稿では, 生成モデルに基づく領域分割拡散確率モデル (R-DDPM) を提案する。
論文 参考訳(メタデータ) (2024-01-06T04:34:46Z) - Exploring Deep Learning Image Super-Resolution for Iris Recognition [50.43429968821899]
重畳自動エンコーダ(SAE)と畳み込みニューラルネットワーク(CNN)の2つの深層学習単一画像超解法手法を提案する。
精度評価と認識実験により,1.872個の近赤外虹彩画像のデータベースを用いて評価を行い,比較アルゴリズムよりも深層学習の方が優れていることを示す。
論文 参考訳(メタデータ) (2023-11-02T13:57:48Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
本稿では,SAR画像復号化のためのトランスフォーマーネットワークを提案する。
提案する非特定ネットワークは、トランスフォーマーベースのエンコーダにより、異なる画像領域間のグローバルな依存関係を学習することができる。
実験により,提案手法は従来型および畳み込み型ニューラルネットワークに基づく解法よりも大幅に改善されていることが示された。
論文 参考訳(メタデータ) (2022-01-23T20:09:01Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
本稿では, ホログラフィ変換を用いた画像検索手法を提案する。
また,ラベル付け手順を必要としないコントラスト学習によって誘導されるDNNのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-21T17:27:07Z) - SAR Image Despeckling Based on Convolutional Denoising Autoencoder [13.579420996461439]
SAR(Synthetic Aperture Radar)イメージングでは、画像解析において非特異性が非常に重要である。
本稿では,C-DAE(Convolutioal Denoising Autoencoder)を用いて,スペックルフリーなSAR画像の再構成を行う。
論文 参考訳(メタデータ) (2020-11-30T09:02:25Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z) - Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot
Convolutional Neural Networks [30.410981386006394]
切り離しはシーン分析アルゴリズムの 重要な予備段階です
ディープラーニングの最近の成功は、新しい世代の非仕様化技術が想定されている。
本稿では,自己教師型ベイズ解法を提案する。
論文 参考訳(メタデータ) (2020-07-04T11:38:48Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。