Generalizable Heuristic Generation Through Large Language Models with Meta-Optimization
- URL: http://arxiv.org/abs/2505.20881v1
- Date: Tue, 27 May 2025 08:26:27 GMT
- Title: Generalizable Heuristic Generation Through Large Language Models with Meta-Optimization
- Authors: Yiding Shi, Jianan Zhou, Wen Song, Jieyi Bi, Yaoxin Wu, Jie Zhang,
- Abstract summary: Heuristic design with large language models (LLMs) has emerged as a promising approach for tackling optimization problems.<n>Existing approaches often rely on manually predefined evolutionary generalizations and single-task training schemes.<n>We propose Meta-Optimization of Heuristics (MoH), a novel framework that operates at the level of meta-learning.
- Score: 14.919482411153185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heuristic design with large language models (LLMs) has emerged as a promising approach for tackling combinatorial optimization problems (COPs). However, existing approaches often rely on manually predefined evolutionary computation (EC) optimizers and single-task training schemes, which may constrain the exploration of diverse heuristic algorithms and hinder the generalization of the resulting heuristics. To address these issues, we propose Meta-Optimization of Heuristics (MoH), a novel framework that operates at the optimizer level, discovering effective optimizers through the principle of meta-learning. Specifically, MoH leverages LLMs to iteratively refine a meta-optimizer that autonomously constructs diverse optimizers through (self-)invocation, thereby eliminating the reliance on a predefined EC optimizer. These constructed optimizers subsequently evolve heuristics for downstream tasks, enabling broader heuristic exploration. Moreover, MoH employs a multi-task training scheme to promote its generalization capability. Experiments on classic COPs demonstrate that MoH constructs an effective and interpretable meta-optimizer, achieving state-of-the-art performance across various downstream tasks, particularly in cross-size settings.
Related papers
- Pareto-Grid-Guided Large Language Models for Fast and High-Quality Heuristics Design in Multi-Objective Combinatorial Optimization [3.952819864255911]
Multi-objective optimization problems (MOCOP) frequently arise in practical applications that require the simultaneous optimization of conflicting objectives.<n>We introduce Multi-heuristics for MOCOP via Pareto-Grid-guided Evolution of LLMs (MPaGE)<n>MPaGE utilizes LLMs to prioritize with semantically distinct logical structures during variation, thus promoting diversity and mitigating redundancy within the population.
arXiv Detail & Related papers (2025-07-28T15:26:43Z) - CALM: Co-evolution of Algorithms and Language Model for Automatic Heuristic Design [11.639825726501659]
Large language models (LLMs) can autonomously discover high-performings at a fraction of the traditional cost.<n>We propose a hybrid framework that combines verbal and numerical guidance.<n>Our method outperforms state-of-the-art (SOTA) baselines across various optimization tasks.
arXiv Detail & Related papers (2025-05-18T07:48:47Z) - Improving Existing Optimization Algorithms with LLMs [0.9668407688201361]
This paper investigates how Large Language Models (LLMs) can enhance existing optimization algorithms.<n>Using their pre-trained knowledge, we demonstrate their ability to propose innovative variations and implementation strategies.<n>Our results show that an alternative proposed by GPT-4o outperforms the expert-designed of CMSA.
arXiv Detail & Related papers (2025-02-12T10:58:57Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.<n>Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.<n>We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - Towards Explainable Evolution Strategies with Large Language Models [0.0]
This paper introduces an approach that integrates self-adaptive Evolution Strategies (ES) with Large Language Models (LLMs)
By employing a self-adaptive ES equipped with a restart mechanism, we effectively navigate the challenging landscapes of benchmark functions.
An LLM is then utilized to process these logs, generating concise, user-friendly summaries.
arXiv Detail & Related papers (2024-07-11T09:28:27Z) - A Problem-Oriented Perspective and Anchor Verification for Code Optimization [43.28045750932116]
Large language models (LLMs) have shown remarkable capabilities in solving various programming tasks.<n>This paper investigates the capabilities of LLMs in optimizing code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
We show that gradient-based and high-level LLMs can effectively collaborate a combined optimization framework.<n>In this paper, we show that these complementary to each other and can effectively collaborate a combined optimization framework.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.<n>We identify two pivotal factors in model parameter learning: update direction and update method.<n>We develop a capable Gradient-inspired Prompt-based GPO.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.