論文の概要: Efficient Spectral Control of Partially Observed Linear Dynamical Systems
- arxiv url: http://arxiv.org/abs/2505.20943v1
- Date: Tue, 27 May 2025 09:28:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.547568
- Title: Efficient Spectral Control of Partially Observed Linear Dynamical Systems
- Title(参考訳): 部分観測線形力学系の効率的なスペクトル制御
- Authors: Anand Brahmbhatt, Gon Buzaglo, Sofiia Druchyna, Elad Hazan,
- Abstract要約: 本稿では, 線形力学系を部分的に観察し, 対角的障害下で制御する新しい手法を提案する。
我々の新しいアルゴリズムであるDouble Spectral Control (DSC)は、実行時の複雑さを指数関数的に改善しながら、最もよく知られた後悔の保証と一致する。
- 参考スコア(独自算出の注目度): 14.023428539503433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new method for the problem of controlling linear dynamical systems under partial observation and adversarial disturbances. Our new algorithm, Double Spectral Control (DSC), matches the best known regret guarantees while exponentially improving runtime complexity over previous approaches in its dependence on the system's stability margin. Our key innovation is a two-level spectral approximation strategy, leveraging double convolution with a universal basis of spectral filters, enabling efficient and accurate learning of the best linear dynamical controllers.
- Abstract(参考訳): 本稿では, 線形力学系を部分的に観察し, 対角的障害下で制御する新しい手法を提案する。
我々の新しいアルゴリズムであるDouble Spectral Control (DSC)は、最もよく知られた後悔の保証と一致し、システムの安定性マージンに依存する以前のアプローチよりも、実行時の複雑さを指数関数的に改善する。
我々の重要な革新は、2段階のスペクトル近似戦略であり、スペクトルフィルタの普遍的な基盤による二重畳み込みを利用して、最良の線形力学コントローラの効率的かつ正確な学習を可能にする。
関連論文リスト
- A New Approach to Controlling Linear Dynamical Systems [14.023428539503433]
本アルゴリズムは,安定性マージンの逆で多対数的にスケールするランニングタイムを実現する。
この手法は、線形制御ポリシーを近似した新しい凸緩和に基づいている。
論文 参考訳(メタデータ) (2025-04-04T21:37:46Z) - Change-Point Detection in Industrial Data Streams based on Online Dynamic Mode Decomposition with Control [5.293458740536858]
オンライン動的モード分解制御(ODMDwC)に基づく新しい変化点検出手法を提案する。
本手法は,Singular-Value-Decomposition法と比較して,直感的かつ優れた検出結果が得られることを示す。
論文 参考訳(メタデータ) (2024-07-08T14:18:33Z) - Neural Lyapunov Control for Discrete-Time Systems [30.135651803114307]
一般的なアプローチは、リャプノフ関数と関連する制御ポリシーの組み合わせを計算することである。
ニューラルネットワークを用いてリアプノフ関数を表現するいくつかの手法が提案されている。
離散時間系におけるニューラルリアプノフ制御の学習のための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-11T03:28:20Z) - Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding [21.38845517949153]
本稿では,非線形系の最適制御のためのスペクトルダイナミクス埋め込み制御(SDEC)を提案する。
我々は、状態-作用値関数を線形に表現するために無限次元の特徴を使い、実用的な実装のために有限次元のトランケーション近似を利用する。
論文 参考訳(メタデータ) (2023-04-08T04:23:46Z) - Best of Both Worlds in Online Control: Competitive Ratio and Policy
Regret [61.59646565655169]
我々は,最近提案されたオンライン制御アルゴリズムが,両世界のベストを達成していることを示す。
線形力学系が未知の場合には, 準線形後悔対最適競争政策が達成可能であると結論づける。
論文 参考訳(メタデータ) (2022-11-21T07:29:08Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Derivative-Free Policy Optimization for Risk-Sensitive and Robust
Control Design: Implicit Regularization and Sample Complexity [15.940861063732608]
直接政策検索は、現代の強化学習(RL)の作業馬の1つとして役立ちます。
線形リスク感知型ロバストコントローラにおける政策ロバスト性(PG)手法の収束理論について検討する。
私たちのアルゴリズムの特徴の1つは、学習フェーズ中に特定のレベルの複雑さ/リスク感受性コントローラが保持されるということです。
論文 参考訳(メタデータ) (2021-01-04T16:00:46Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
視覚SLAMシステムのための新しい最適化バックボーンを提案する。
従来の単分子SLAMシステムの精度, 効率, 堅牢性を向上させるために, 平均化を活用している。
我々のアプローチは、公開ベンチマークの最先端技術に対して、同等の精度で最大10倍高速に表示することができる。
論文 参考訳(メタデータ) (2020-11-02T18:02:26Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
未知の安定化線形力学系におけるモデルベース強化学習(RL)について検討する。
本研究では,環境を効果的に探索することで,基盤システムの高速安定化を証明できるアルゴリズムを提案する。
提案アルゴリズムはエージェント環境相互作用の時間ステップで$tildemathcalO(sqrtT)$ regretを達成した。
論文 参考訳(メタデータ) (2020-07-23T23:06:40Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。