TabAttackBench: A Benchmark for Adversarial Attacks on Tabular Data
- URL: http://arxiv.org/abs/2505.21027v1
- Date: Tue, 27 May 2025 11:01:32 GMT
- Title: TabAttackBench: A Benchmark for Adversarial Attacks on Tabular Data
- Authors: Zhipeng He, Chun Ouyang, Lijie Wen, Cong Liu, Catarina Moreira,
- Abstract summary: Adversarial attacks pose a significant threat to machine learning models.<n>These attacks induce incorrect predictions through imperceptible perturbations to input data.<n>This study examines the effectiveness and imperceptibility of five adversarial attacks across four models.
- Score: 15.189680105419924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks pose a significant threat to machine learning models by inducing incorrect predictions through imperceptible perturbations to input data. While these attacks have been extensively studied in unstructured data like images, their application to tabular data presents new challenges. These challenges arise from the inherent heterogeneity and complex feature interdependencies in tabular data, which differ significantly from those in image data. To address these differences, it is crucial to consider imperceptibility as a key criterion specific to tabular data. Most current research focuses primarily on achieving effective adversarial attacks, often overlooking the importance of maintaining imperceptibility. To address this gap, we propose a new benchmark for adversarial attacks on tabular data that evaluates both effectiveness and imperceptibility. In this study, we assess the effectiveness and imperceptibility of five adversarial attacks across four models using eleven tabular datasets, including both mixed and numerical-only datasets. Our analysis explores how these factors interact and influence the overall performance of the attacks. We also compare the results across different dataset types to understand the broader implications of these findings. The findings from this benchmark provide valuable insights for improving the design of adversarial attack algorithms, thereby advancing the field of adversarial machine learning on tabular data.
Related papers
- DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective [59.66984417026933]
We introduce a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing)<n>We formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset.<n>Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery.<n>Our benchmark, DATABench, comprises 17 evasion attacks, 5 forgery attacks, and 9
arXiv Detail & Related papers (2025-07-08T03:07:15Z) - Addressing Key Challenges of Adversarial Attacks and Defenses in the Tabular Domain: A Methodological Framework for Coherence and Consistency [26.645723217188323]
Class-Specific Anomaly Detection (CSAD) is an effective novel anomaly detection approach.<n> CSAD evaluates adversarial samples relative to their predicted class distribution, rather than a broad benign distribution.<n>Our evaluation incorporates both anomaly detection rates with SHAP-based assessments to provide a more comprehensive measure of adversarial sample quality.
arXiv Detail & Related papers (2024-12-10T09:17:09Z) - Understanding Data Importance in Machine Learning Attacks: Does Valuable Data Pose Greater Harm? [23.2883929808036]
We investigate the relationship between data importance and machine learning attacks by analyzing five distinct attack types.
For example, we observe that high importance data samples exhibit increased vulnerability in certain attacks, such as membership inference and model stealing.
These findings emphasize the urgent need for innovative defense mechanisms that strike a balance between maximizing utility and safeguarding valuable data.
arXiv Detail & Related papers (2024-09-05T17:54:26Z) - Investigating Imperceptibility of Adversarial Attacks on Tabular Data: An Empirical Analysis [1.6693963355435217]
Adversarial attacks are a potential threat to machine learning models.
These attacks cause incorrect predictions through imperceptible perturbations to the input data.
This study proposes a set of key properties and corresponding metrics to assess the imperceptibility of adversarial attacks.
arXiv Detail & Related papers (2024-07-16T07:55:25Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
arXiv Detail & Related papers (2023-09-07T12:02:00Z) - It Is All About Data: A Survey on the Effects of Data on Adversarial
Robustness [4.1310970179750015]
Adversarial examples are inputs to machine learning models that an attacker has intentionally designed to confuse the model into making a mistake.
To address this problem, the area of adversarial robustness investigates mechanisms behind adversarial attacks and defenses against these attacks.
arXiv Detail & Related papers (2023-03-17T04:18:03Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
Data heterogeneity has been identified as one of the key features in federated learning but often overlooked in the lens of robustness to adversarial attacks.
This paper focuses on characterizing and understanding its impact on backdooring attacks in federated learning through comprehensive experiments using synthetic and the LEAF benchmarks.
arXiv Detail & Related papers (2021-02-01T06:06:21Z) - Characterizing the Evasion Attackability of Multi-label Classifiers [37.00606062677375]
Evasion attack in multi-label learning systems is an interesting, widely witnessed, yet rarely explored research topic.
Characterizing the crucial factors determining the attackability of the multi-label adversarial threat is the key to interpret the origin of the vulnerability.
We propose an efficient empirical attackability estimator via greedy label space exploration.
arXiv Detail & Related papers (2020-12-17T07:34:40Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.