論文の概要: Def-DTS: Deductive Reasoning for Open-domain Dialogue Topic Segmentation
- arxiv url: http://arxiv.org/abs/2505.21033v1
- Date: Tue, 27 May 2025 11:07:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.59791
- Title: Def-DTS: Deductive Reasoning for Open-domain Dialogue Topic Segmentation
- Title(参考訳): Def-DTS: オープンドメイン対話トピックセグメンテーションのためのデダクティブ推論
- Authors: Seungmin Lee, Yongsang Yoo, Minhwa Jung, Min Song,
- Abstract要約: 本稿では,オープンドメイン対話トピックのためのDef-DTS:deductive Reasoningを提案する。
提案手法は,双方向コンテキスト要約,発話意図分類,帰納的トピックシフト検出のための構造化されたプロンプト手法を用いる。
様々な対話設定の実験では、Def-DTSは従来と最先端のアプローチを一貫して上回っている。
- 参考スコア(独自算出の注目度): 2.1594788541056467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dialogue Topic Segmentation (DTS) aims to divide dialogues into coherent segments. DTS plays a crucial role in various NLP downstream tasks, but suffers from chronic problems: data shortage, labeling ambiguity, and incremental complexity of recently proposed solutions. On the other hand, Despite advances in Large Language Models (LLMs) and reasoning strategies, these have rarely been applied to DTS. This paper introduces Def-DTS: Deductive Reasoning for Open-domain Dialogue Topic Segmentation, which utilizes LLM-based multi-step deductive reasoning to enhance DTS performance and enable case study using intermediate result. Our method employs a structured prompting approach for bidirectional context summarization, utterance intent classification, and deductive topic shift detection. In the intent classification process, we propose the generalizable intent list for domain-agnostic dialogue intent classification. Experiments in various dialogue settings demonstrate that Def-DTS consistently outperforms traditional and state-of-the-art approaches, with each subtask contributing to improved performance, particularly in reducing type 2 error. We also explore the potential for autolabeling, emphasizing the importance of LLM reasoning techniques in DTS.
- Abstract(参考訳): 対話トピックセグメンテーション(DTS)は、対話を一貫性のあるセグメントに分割することを目的としている。
DTSは、様々なNLP下流タスクにおいて重要な役割を果たすが、データ不足、曖昧さのラベル付け、最近提案されたソリューションの漸進的な複雑さといった慢性的な問題に悩まされている。
一方、LLM(Large Language Models)や推論戦略の進歩にもかかわらず、これらがDTSに適用されることはめったにない。
本稿では, LLMに基づく多段階帰納推論を用いてDTS性能を高め, 中間結果を用いたケーススタディを実現するオープンドメイン対話トピックセグメンテーションのためのデフ-DTSについて紹介する。
提案手法は,双方向コンテキスト要約,発話意図分類,帰納的トピックシフト検出のための構造化されたプロンプト手法を用いる。
そこで本研究では,ドメインに依存しない対話意図分類のための一般化可能な意図リストを提案する。
様々なダイアログ設定の実験では、Def-DTSは従来と最先端のアプローチを一貫して上回り、各サブタスクはパフォーマンスの改善、特にタイプ2エラーの低減に寄与している。
また, DTSにおけるLPM推論技術の重要性を強調し, 自動ラベリングの可能性についても検討する。
関連論文リスト
- An Unsupervised Dialogue Topic Segmentation Model Based on Utterance Rewriting [3.5399864027190366]
本研究では,Utterance Rewriting(UR)技術と教師なし学習アルゴリズムを組み合わせた,教師なし対話トピックセグメンテーション手法を提案する。
The proposed Discourse Rewriting Topic Model (UR-DTS) is significantly improves the accuracy of topic segmentation。
論文 参考訳(メタデータ) (2024-09-12T00:27:31Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
既成のLarge Language Models (LLM) の推論能力を高めるため, 単純で汎用的で効果的なプロンプト手法であるRe2を導入する。
CoT (Chain-of-Thought) など、ほとんどの思考を刺激する手法とは異なり、Re2 は質問を2回処理することで入力に焦点を移し、理解プロセスを強化する。
提案手法の有効性と汎用性を検証するため,14のデータセットにまたがる広範囲な推論ベンチマークでRe2を評価した。
論文 参考訳(メタデータ) (2023-09-12T14:36:23Z) - Unsupervised Dialogue Topic Segmentation with Topic-aware Utterance
Representation [51.22712675266523]
対話トピック(DTS)は、様々な対話モデリングタスクにおいて重要な役割を果たす。
本稿では,ラベルなし対話データからトピック対応発話表現を学習する,教師なしDSSフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-04T11:35:23Z) - Multi-Stage Coarse-to-Fine Contrastive Learning for Conversation Intent
Induction [34.25242109800481]
本稿では,第11回対話システム技術チャレンジ(DSTC11)におけるタスク指向対話における会話からのインテントインジェクションの追跡方法について述べる。
意図的クラスタリングの本質は、異なる対話発話の表現を区別することにある。
DSTC11の評価結果では,このトラックの2つのサブタスクのうちの1位が提案システムである。
論文 参考訳(メタデータ) (2023-03-09T04:51:27Z) - Collaborative Reasoning on Multi-Modal Semantic Graphs for
Video-Grounded Dialogue Generation [53.87485260058957]
本研究では,対話コンテキストと関連ビデオに基づいて応答を生成するビデオグラウンド・ダイアログ生成について検討する。
本課題の主な課題は,(1)事前学習言語モデル(PLM)に映像データを統合することの難しさである。
異なるモーダルの推論を協調的に行うマルチエージェント強化学習法を提案する。
論文 参考訳(メタデータ) (2022-10-22T14:45:29Z) - GRASP: Guiding model with RelAtional Semantics using Prompt [3.1275060062551208]
本稿では Prompt (GRASP) を用いたRelAtional Semantics を用いた誘導モデルを提案する。
我々は、プロンプトベースの微調整アプローチを採用し、引数を意識したプロンプトマーカー戦略を用いて、ある対話における関係意味的手がかりをキャプチャする。
実験では、DialogREデータセット上でのF1とF1cのスコアの観点から、GRASPの最先端のパフォーマンスが評価された。
論文 参考訳(メタデータ) (2022-08-26T08:19:28Z) - End-to-End Active Speaker Detection [58.7097258722291]
本稿では,特徴学習と文脈予測を共同で学習するエンド・ツー・エンドのトレーニングネットワークを提案する。
また、時間間グラフニューラルネットワーク(iGNN)ブロックを導入し、ASD問題における主要なコンテキストのソースに応じてメッセージパッシングを分割する。
実験により、iGNNブロックからの集約された特徴はASDにより適しており、その結果、最先端のアートパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2022-03-27T08:55:28Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
本稿では,トピック認識発話を教師なしでセグメント化して抽出する,多元対話モデリングのための新しいソリューションを提案する。
トピック・アウェア・モデリングは、新たに提案されたトピック・アウェア・セグメンテーション・アルゴリズムとトピック・アウェア・デュアル・アテンション・マッチング(TADAM)ネットワークによって実現されている。
論文 参考訳(メタデータ) (2020-09-26T08:43:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。