A domain adaptation neural network for digital twin-supported fault diagnosis
- URL: http://arxiv.org/abs/2505.21046v1
- Date: Tue, 27 May 2025 11:27:05 GMT
- Title: A domain adaptation neural network for digital twin-supported fault diagnosis
- Authors: Zhenling Chen, Haiwei Fu, Zhiguo Zeng,
- Abstract summary: Digital twins offer a promising solution to the lack of sufficient labeled data in deep learning-based fault diagnosis.<n> discrepancies between simulation and real-world systems can lead to a significant drop in performance when models are applied in real scenarios.<n>We propose a fault diagnosis framework based on Domain-Adversarial Neural Networks (DANN), which enables knowledge transfer from simulated to real-world data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Digital twins offer a promising solution to the lack of sufficient labeled data in deep learning-based fault diagnosis by generating simulated data for model training. However, discrepancies between simulation and real-world systems can lead to a significant drop in performance when models are applied in real scenarios. To address this issue, we propose a fault diagnosis framework based on Domain-Adversarial Neural Networks (DANN), which enables knowledge transfer from simulated (source domain) to real-world (target domain) data. We evaluate the proposed framework using a publicly available robotics fault diagnosis dataset, which includes 3,600 sequences generated by a digital twin model and 90 real sequences collected from physical systems. The DANN method is compared with commonly used lightweight deep learning models such as CNN, TCN, Transformer, and LSTM. Experimental results show that incorporating domain adaptation significantly improves the diagnostic performance. For example, applying DANN to a baseline CNN model improves its accuracy from 70.00% to 80.22% on real-world test data, demonstrating the effectiveness of domain adaptation in bridging the sim-to-real gap.
Related papers
- Intrusion Detection in Heterogeneous Networks with Domain-Adaptive Multi-Modal Learning [1.03590082373586]
We develop a deep neural model that integrates multi-modal learning with domain adaptation techniques for classification.<n>Our model processes data from diverse sources in a sequential cyclic manner, allowing it to learn from multiple datasets and adapt to varying feature spaces.<n> Experimental results demonstrate that our proposed model significantly outperforms baseline neural models in classifying network intrusions.
arXiv Detail & Related papers (2025-08-05T14:46:03Z) - Fusing CFD and measurement data using transfer learning [49.1574468325115]
We introduce a non-linear method based on neural networks combining simulation and measurement data via transfer learning.<n>In a first step, the neural network is trained on simulation data to learn spatial features of the distributed quantities.<n>The second step involves transfer learning on the measurement data to correct for systematic errors between simulation and measurement by only re-training a small subset of the entire neural network model.
arXiv Detail & Related papers (2025-07-28T07:21:46Z) - Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
We introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds.<n>Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures.<n>We propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training.
arXiv Detail & Related papers (2025-06-26T11:53:59Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Smart filter aided domain adversarial neural network for fault diagnosis
in noisy industrial scenarios [11.094903196524404]
We propose an unsupervised domain adaptation (UDA) method called Smart Filter-Aided Domain Adversarial Neural Network (SFDANN) for fault diagnosis in noisy industrial scenarios.
The proposed methodology comprises two steps. In the first step, we develop a smart filter that dynamically enforces similarity between the source and target domain data in the time-frequency domain.
In the second step, we input the data reconstructed by the smart filter into a domain adversarial neural network (DANN)
arXiv Detail & Related papers (2023-07-04T01:47:00Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Spatial Graph Convolutional Neural Network via Structured Subdomain
Adaptation and Domain Adversarial Learning for Bearing Fault Diagnosis [0.0]
Unsupervised domain adaptation (UDA) has shown remarkable results in bearing fault diagnosis under changing working conditions.
This paper addresses mentioned challenges by presenting the novel deep subdomain adaptation graph convolution neural network (DSAGCN)
It has two key characteristics: First, graph convolution neural network (GCNN) is employed to model the structure of data.
arXiv Detail & Related papers (2021-12-11T17:34:36Z) - Knowledge Transfer based Evolutionary Deep Neural Network for Intelligent Fault Diagnosis [6.167830237917662]
We propose an evolutionary Net2Net transformation (EvoN2N) that finds the best suitable DNN architecture with limited availability of labeled data samples.<n>The proposed framework can obtain the best model for intelligent fault diagnosis without a long and time-consuming search process.<n>The best models obtained are capable of demonstrating an excellent diagnostic performance and classification accuracy of almost up to 100% for most of the operating conditions.
arXiv Detail & Related papers (2021-09-28T04:31:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Neural Architecture Search For Fault Diagnosis [6.226564415963648]
Deep learning is suitable for processing big data, and has a strong feature extraction ability to realize end-to-end fault diagnosis systems.
Neural architecture search (NAS) is developing rapidly, and is becoming one of the next directions for deep learning.
In this paper, we proposed a NAS method for fault diagnosis using reinforcement learning.
arXiv Detail & Related papers (2020-02-19T04:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.