論文の概要: FastFace: Tuning Identity Preservation in Distilled Diffusion via Guidance and Attention
- arxiv url: http://arxiv.org/abs/2505.21144v1
- Date: Tue, 27 May 2025 12:55:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.655915
- Title: FastFace: Tuning Identity Preservation in Distilled Diffusion via Guidance and Attention
- Title(参考訳): FastFace: 誘導と注意による蒸留拡散におけるチューニングID保存
- Authors: Sergey Karpukhin, Vadim Titov, Andrey Kuznetsov, Aibek Alanov,
- Abstract要約: 蒸留により加速される拡散モデルに対するID適応器の学習自由化の課題に対処する。
我々は、アイデンティティの類似性と忠実性を改善するために、ユニバーサルなFastFaceフレームワークを提案する。
また,ID保存アダプタのための公開評価プロトコルも開発している。
- 参考スコア(独自算出の注目度): 3.0248879829045388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In latest years plethora of identity-preserving adapters for a personalized generation with diffusion models have been released. Their main disadvantage is that they are dominantly trained jointly with base diffusion models, which suffer from slow multi-step inference. This work aims to tackle the challenge of training-free adaptation of pretrained ID-adapters to diffusion models accelerated via distillation - through careful re-design of classifier-free guidance for few-step stylistic generation and attention manipulation mechanisms in decoupled blocks to improve identity similarity and fidelity, we propose universal FastFace framework. Additionally, we develop a disentangled public evaluation protocol for id-preserving adapters.
- Abstract(参考訳): 近年,拡散モデルを用いたパーソナライズされた世代向けID保存アダプタが多数リリースされている。
主な欠点は、低速な多段階推論に苦しむベース拡散モデルと共に、支配的な訓練を受けていることである。
本研究は,未学習のID適応器を蒸留により加速した拡散モデルに適応させる学習自由化の課題に対処することを目的としている - 分割ブロックにおける数ステップのスタイリスティック生成のための分類自由誘導と注意制御機構を慎重に再設計し,アイデンティティの類似性と忠実性を改善することを目的として,FastFaceフレームワークを提案する。
さらに,ID保存アダプタのための公開評価プロトコルを開発する。
関連論文リスト
- Adding Additional Control to One-Step Diffusion with Joint Distribution Matching [58.37264951734603]
JDMは、画像-条件関節分布間の逆KL分散を最小化する新しいアプローチである。
トラクタブルな上限を導出することにより、JDMは条件学習から忠実度学習を分離する。
この非対称蒸留方式により,一段階の生徒が教師モデルに未知の制御を処理できるようになる。
論文 参考訳(メタデータ) (2025-03-09T15:06:50Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
本稿では,脱臭過程を1段階に短縮する新しいフレームワークである脱臭拡散モデル(OSDD)を提案する。
拡散モデルにおける忠実度損失に対処するために,構造復元を改善する改良された変分オートエンコーダ(eVAE)を導入する。
提案手法は,実測値と非参照値の両方で高い性能を達成する。
論文 参考訳(メタデータ) (2025-03-09T09:39:57Z) - Generalized Interpolating Discrete Diffusion [65.74168524007484]
仮面拡散はその単純さと有効性のために一般的な選択である。
離散拡散過程を補間する一般族の理論的バックボーンを導出する。
GIDDのフレキシビリティをエクスプロイトし、マスクと均一ノイズを組み合わせたハイブリッドアプローチを探索する。
論文 参考訳(メタデータ) (2025-03-06T14:30:55Z) - Masked Autoencoders Are Effective Tokenizers for Diffusion Models [56.08109308294133]
MAETokは自己エンコーダであり、再構築の忠実さを維持しながら意味的にリッチな潜在空間を学習する。
MaETokは1.69のgFIDで76倍高速トレーニングが可能で、512x512世代で31倍高い推論スループットを実現している。
論文 参考訳(メタデータ) (2025-02-05T18:42:04Z) - HiFiVFS: High Fidelity Video Face Swapping [35.49571526968986]
Face swappingは、ソースからのIDとターゲットからの属性を組み合わせた結果を生成することを目的としている。
安定ビデオ拡散の強い生成能力と時間的先行を生かした高忠実度ビデオ顔交換フレームワークを提案する。
本手法は,映像面スワップにおける最新技術(SOTA)を質的かつ定量的に達成する。
論文 参考訳(メタデータ) (2024-11-27T12:30:24Z) - Score Forgetting Distillation: A Swift, Data-Free Method for Machine Unlearning in Diffusion Models [63.43422118066493]
マシン・アンラーニング(MU)は安全でセキュアで信頼性の高いGenAIモデルを開発する上で重要な基盤である。
従来のMUメソッドは、しばしば厳密な仮定に依存し、実際のデータへのアクセスを必要とする。
本稿では,拡散モデルにおいて望ましくない情報を忘れることを促進する革新的なMUアプローチであるScore Forgetting Distillation (SFD)を紹介する。
論文 参考訳(メタデータ) (2024-09-17T14:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。