Crop recommendation with machine learning: leveraging environmental and economic factors for optimal crop selection
- URL: http://arxiv.org/abs/2505.21201v1
- Date: Tue, 27 May 2025 13:47:56 GMT
- Title: Crop recommendation with machine learning: leveraging environmental and economic factors for optimal crop selection
- Authors: Steven Sam, Silima Marshal DAbreo,
- Abstract summary: Agriculture constitutes a primary source of food production, economic growth and employment in India.<n>The adoption of computational tools like crop recommendation systems offers a new way to provide insights and help farmers tackle low productivity.<n>This study uses environmental and economic factors with 19 crops across 15 states to develop and evaluate Random Forest and SVM models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agriculture constitutes a primary source of food production, economic growth and employment in India, but the sector is confronted with low farm productivity and yields aggravated by increased pressure on natural resources and adverse climate change variability. Efforts involving green revolution, land irrigations, improved seeds and organic farming have yielded suboptimal outcomes. The adoption of computational tools like crop recommendation systems offers a new way to provide insights and help farmers tackle low productivity. However, most agricultural recommendation systems in India focus narrowly on environmental factors and regions, limiting accurate predictions of high-yield, profitable crops. This study uses environmental and economic factors with 19 crops across 15 states to develop and evaluate Random Forest and SVM models using 10-fold Cross Validation, Time-series Split, and Lag Variables. The 10-fold cross validation showed high accuracy (RF: 99.96%, SVM: 94.71%) but raised overfitting concerns. Introducing temporal order, better reflecting real-world conditions, reduced performance (RF: 78.55%, SVM: 71.18%) in the Time-series Split.To further increase the model accuracy while maintaining the temporal order, the Lag Variables approach was employed, which resulted in improved performance (RF: 83.62%, SVM: 74.38%) compared to the 10-fold cross validation approach. Overall, the models in the Time-series Split and Lag Variable Approaches offer practical insights by handling temporal dependencies and enhancing its adaptability to changing agricultural conditions over time. Consequently, the study shows the Random Forest model developed based on the Lag Variables as the most preferred algorithm for optimal crop recommendation in the Indian context.
Related papers
- Crop Yield Time-Series Data Prediction Based on Multiple Hybrid Machine Learning Models [6.10631040784366]
This study focuses on crop yield Time-Series Data prediction.<n>Considering the crucial significance of agriculture in the global economy and social stability, this research uses a dataset containing multiple crops, multiple regions, and data over many years.<n>Multiple hybrid machine learning models such as Linear Regression, Random Forest, Gradient Boost, XGBoost, KNN, Decision Tree, and Bagging Regressor are adopted for yield prediction.
arXiv Detail & Related papers (2025-01-21T23:41:33Z) - Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - Sparsity, Regularization and Causality in Agricultural Yield: The Case
of Paddy Rice in Peru [0.0]
This study integrates agricultural census data with remotely sensed time series to develop precise predictive models for paddy rice yield across various regions of Peru.
By utilizing sparse regression and Elastic-Net regularization techniques, the study identifies causal relationships between key remotely sensed variables.
arXiv Detail & Related papers (2024-09-25T19:16:54Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Learning-based agricultural management in partially observable
environments subject to climate variability [5.5062239803516615]
Agricultural management holds a central role in shaping crop yield, economic profitability, and environmental sustainability.
We introduce an innovative framework that integrates Deep Reinforcement Learning (DRL) with Recurrent Neural Networks (RNNs)
Our study illuminates the need for agent retraining to acquire new optimal policies under extreme weather events.
arXiv Detail & Related papers (2024-01-02T16:18:53Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Evaluating Digital Agriculture Recommendations with Causal Inference [0.9213852038999553]
We propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators.
As a case study, we designed and implemented a recommendation system for the optimal sowing time of cotton based on numerical weather predictions.
Using the back-door criterion, we identify the impact of sowing recommendations on the yield and subsequently estimate it using linear regression, matching, inverse propensity score weighting and meta-learners.
arXiv Detail & Related papers (2022-11-30T12:20:08Z) - Risk-averse Stochastic Optimization for Farm Management Practices and
Cultivar Selection Under Uncertainty [8.427937898153779]
We develop optimization frameworks under uncertainty using conditional value-at-risk in the objective programming function.
As a case study, we set up the crop model for 25 locations across the US Corn Belt.
Results indicated that the proposed model produced meaningful connections between weather and optima decisions.
arXiv Detail & Related papers (2022-07-17T01:14:43Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.