論文の概要: Conformance Checking for Less: Efficient Conformance Checking for Long Event Sequences
- arxiv url: http://arxiv.org/abs/2505.21506v1
- Date: Sun, 09 Mar 2025 16:42:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-22 23:32:14.402403
- Title: Conformance Checking for Less: Efficient Conformance Checking for Long Event Sequences
- Title(参考訳): 少ないコンフォーマンスチェック:長いイベントシーケンスの効率的なコンフォーマンスチェック
- Authors: Eli Bogdanov, Izack Cohen, Avigdor Gal,
- Abstract要約: ConLESは、長いイベントシーケンスのスライディングウィンドウ適合性チェックアプローチである。
トレースを管理可能なサブトレースに分割し、それぞれが期待する振る舞いと整合する。
トレースとプロセスモデルの両方の構造特性をキャプチャするグローバル情報を使用します。
- 参考スコア(独自算出の注目度): 3.3170150440851485
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Long event sequences (termed traces) and large data logs that originate from sensors and prediction models are becoming increasingly common in our data-rich world. In such scenarios, conformance checking-validating a data log against an expected system behavior (the process model) can become computationally infeasible due to the exponential complexity of finding an optimal alignment. To alleviate scalability challenges for this task, we propose ConLES, a sliding-window conformance checking approach for long event sequences that preserves the interpretability of alignment-based methods. ConLES partitions traces into manageable subtraces and iteratively aligns each against the expected behavior, leading to significant reduction of the search space while maintaining overall accuracy. We use global information that captures structural properties of both the trace and the process model, enabling informed alignment decisions and discarding unpromising alignments, even if they appear locally optimal. Performance evaluations across multiple datasets highlight that ConLES outperforms the leading optimal and heuristic algorithms for long traces, consistently achieving the optimal or near-optimal solution. Unlike other conformance methods that struggle with long event sequences, ConLES significantly reduces the search space, scales efficiently, and uniquely supports both predefined and discovered process models, making it a viable and leading option for conformance checking of long event sequences.
- Abstract(参考訳): センサや予測モデルから派生した長いイベントシーケンス(終端トレース)と大規模なデータログは、私たちのデータリッチな世界でますます一般的になっています。
このようなシナリオでは、最適なアライメントを見つけるという指数関数的な複雑さのために、期待されるシステム動作(プロセスモデル)に対してデータログを検証する適合性チェックが計算不能になる可能性がある。
本研究では,この課題に対するスケーラビリティの課題を軽減するために,アライメントベースの手法の解釈性を保った長いイベントシーケンスに対するスライディングウインドウ適合性チェックアプローチであるConLESを提案する。
ConLESパーティションは管理可能なサブトレースにトレースされ、それぞれが期待する振る舞いと反復的に一致し、全体的な精度を維持しながら、検索スペースが大幅に削減される。
我々は、トレースとプロセスモデルの両方の構造的特性を捉えるグローバル情報を使用し、たとえ局所的に最適であるとしても、情報的なアライメント決定と非プロミッシングアライメントの破棄を可能にします。
複数のデータセットのパフォーマンス評価は、ConLESが長いトレースに対して最上位の最適かつヒューリスティックなアルゴリズムより優れており、常に最適またはほぼ最適のソリューションを達成することを強調している。
長いイベントシーケンスに苦しむ他のコンフォーマンスメソッドとは異なり、ConLESは検索スペースを著しく削減し、効率よくスケールし、事前に定義されたプロセスモデルと発見されたプロセスモデルの両方を一意にサポートし、長いイベントシーケンスのコンフォーマンスチェックに有効で先進的なオプションである。
関連論文リスト
- $φ$-Decoding: Adaptive Foresight Sampling for Balanced Inference-Time Exploration and Exploitation [22.607133083903125]
インタイム最適化は計算をスケールし、効果的なパフォーマンスのための意図的な推論ステップを導出する。
我々は、デコード戦略を事前サンプリングとして、シミュレーションされた将来のステップを利用して、大域的に最適なステップ推定を得る。
実験では、$phi$-Decodingはパフォーマンスと効率の両方において、強いベースラインを上回ります。
論文 参考訳(メタデータ) (2025-03-17T15:38:33Z) - ProTracker: Probabilistic Integration for Robust and Accurate Point Tracking [41.889032460337226]
ProTrackerは、ビデオ内の任意の点を正確かつ堅牢に追跡する新しいフレームワークである。
この設計は、グローバルな意味情報と時間的に認識される低レベル特徴を効果的に組み合わせている。
実験により、ProTrackerは最適化ベースのアプローチで最先端のパフォーマンスを得ることができた。
論文 参考訳(メタデータ) (2025-01-06T18:55:52Z) - Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
本稿では,セルをポイントとして扱うことで細胞追跡を再現する新しいエンド・ツー・エンドのワンステージフレームワークを提案する。
従来の方法とは異なり、CAPは明示的な検出やセグメンテーションの必要性を排除し、代わりに1段階の配列の細胞を共同で追跡する。
CAPは有望な細胞追跡性能を示し、既存の方法の10倍から55倍効率が高い。
論文 参考訳(メタデータ) (2024-11-22T10:16:35Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
大規模言語モデル(LLM)は様々なタスクで大きな成功を収めており、生成品質をさらに向上させるためには微調整が必要である場合もある。
これらの課題に対処する直接的な解決策は、教師なしの下流タスクから高信頼のデータを生成することである。
本稿では,プロンプトと全体的な擬似スーパービジョンを両立させる新しい手法,擬似教師付きデモアライメント・アライメント・アライメント・プロンプト・最適化(PAPO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - A Scalable and Near-Optimal Conformance Checking Approach for Long Traces [3.3170150440851485]
プロセスマイニングにおける重要なタスクであるコンフォーマルティチェックは、最適なアライメントを見つけるという指数関数的な複雑さのため、計算不能になる可能性がある。
本稿では,これらの拡張性に対処する新しいスライディングウインドウ手法を提案する。
トレースを管理可能なサブトレースに分割し,プロセスモデルと反復的に整列することにより,検索空間を大幅に削減する。
論文 参考訳(メタデータ) (2024-06-08T11:04:42Z) - Parsimonious Optimal Dynamic Partial Order Reduction [1.5029560229270196]
本稿では,Parsimonious-Optimal DPOR(POP)を提案する。
POPは、(i)同じ人種の複数の逆転を避ける擬似的な人種反転戦略を含む、いくつかの新しいアルゴリズム技術を組み合わせている。
我々のNidhuggの実装は、これらの手法が並列プログラムの解析を著しく高速化し、メモリ消費を抑えられることを示している。
論文 参考訳(メタデータ) (2024-05-18T00:07:26Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Generalizable Mixed-Precision Quantization via Attribution Rank
Preservation [90.26603048354575]
効率的な推論のための一般化可能な混合精度量子化法(GMPQ)を提案する。
提案手法は,最先端の混合精度ネットワークと比較し,競合精度・複雑度トレードオフを求める。
論文 参考訳(メタデータ) (2021-08-05T16:41:57Z) - Efficient Conformance Checking using Approximate Alignment Computation
with Tandem Repeats [0.03222802562733786]
コンフォーマンスチェックは、期待されるプロセスの振る舞いをキャプチャするプロセスモデルと、観測された振る舞いを記録する対応するイベントログの違いを発見し、記述することを目的としている。
アライメントは、イベントログ内のトレースと、対応するプロセスモデルの最も近い実行トレースの間の距離を計算するための確立されたテクニックである。
本稿では,前処理と後処理を併用してトレースの長さを圧縮し,アライメントコストを再計算する手法を提案する。
論文 参考訳(メタデータ) (2020-04-02T03:50:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。