論文の概要: A Scalable and Near-Optimal Conformance Checking Approach for Long Traces
- arxiv url: http://arxiv.org/abs/2406.05439v1
- Date: Sat, 8 Jun 2024 11:04:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 19:45:22.134953
- Title: A Scalable and Near-Optimal Conformance Checking Approach for Long Traces
- Title(参考訳): 長いトレースに対する拡張性と近似的コンフォーマンスチェック手法
- Authors: Eli Bogdanov, Izack Cohen, Avigdor Gal,
- Abstract要約: プロセスマイニングにおける重要なタスクであるコンフォーマルティチェックは、最適なアライメントを見つけるという指数関数的な複雑さのため、計算不能になる可能性がある。
本稿では,これらの拡張性に対処する新しいスライディングウインドウ手法を提案する。
トレースを管理可能なサブトレースに分割し,プロセスモデルと反復的に整列することにより,検索空間を大幅に削減する。
- 参考スコア(独自算出の注目度): 3.3170150440851485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long traces and large event logs that originate from sensors and prediction models are becoming more common in our data-rich world. In such circumstances, conformance checking, a key task in process mining, can become computationally infeasible due to the exponential complexity of finding an optimal alignment. This paper introduces a novel sliding window approach to address these scalability challenges while preserving the interpretability of alignment-based methods. By breaking down traces into manageable subtraces and iteratively aligning each with the process model, our method significantly reduces the search space. The approach uses global information that captures structural properties of the trace and the process model to make informed alignment decisions, discarding unpromising alignments even if they are optimal for a local subtrace. This improves the overall accuracy of the results. Experimental evaluations demonstrate that the proposed method consistently finds optimal alignments in most cases and highlight its scalability. This is further supported by a theoretical complexity analysis, which shows the reduced growth of the search space compared to other common conformance checking methods. This work provides a valuable contribution towards efficient conformance checking for large-scale process mining applications.
- Abstract(参考訳): センサや予測モデルから派生した長いトレースと大規模なイベントログは、私たちのデータ豊富な世界ではますます一般的になっています。
このような状況下では、プロセスマイニングにおける重要なタスクである適合性チェックは、最適なアライメントを見つけるという指数関数的な複雑さのため、計算不能になる可能性がある。
本稿では,アライメントに基づく手法の解釈可能性を維持しつつ,これらの拡張性に対処する新しいスライディングウインドウ手法を提案する。
トレースを管理可能なサブトレースに分割し,プロセスモデルと反復的に整列することにより,検索空間を大幅に削減する。
このアプローチでは、トレースとプロセスモデルの構造的特性を捉えたグローバルな情報を使用して、インフォームドアライメント決定を行い、ローカルなサブトレースに最適であるとしても、予期せぬアライメントを破棄する。
これにより結果の全体的な精度が向上する。
実験により,提案手法はほとんどの場合において常に最適なアライメントを見つけ,その拡張性を強調していることが示された。
これは、他の一般的な適合性検査法と比較して、探索空間の増大を減少させる理論的な複雑性解析によってさらに支持される。
この研究は、大規模プロセスマイニングアプリケーションに対する効率的な適合性チェックへの貴重な貢献を提供する。
関連論文リスト
- Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
モンテカルロシミュレーションによる政策評価は多くのMC強化学習(RL)アルゴリズムの中核にある。
本研究では,異なる長さの軌跡を用いた回帰推定器の平均二乗誤差のサロゲートとして品質指標を提案する。
本稿では,Robust and Iterative Data Collection Strategy Optimization (RIDO) という適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-17T11:47:56Z) - AcceleratedLiNGAM: Learning Causal DAGs at the speed of GPUs [57.12929098407975]
既存の因果探索法を効率的に並列化することにより,数千次元まで拡張可能であることを示す。
具体的には、DirectLiNGAMの因果順序付けサブプロデューサに着目し、GPUカーネルを実装して高速化する。
これにより、遺伝子介入による大規模遺伝子発現データに対する因果推論にDirectLiNGAMを適用することで、競争結果が得られる。
論文 参考訳(メタデータ) (2024-03-06T15:06:11Z) - Sparse Variational Student-t Processes [8.46450148172407]
学生Tプロセスは、重い尾の分布とデータセットをアウトリーチでモデル化するために使用される。
本研究では,学生プロセスが現実のデータセットに対してより柔軟になるためのスパース表現フレームワークを提案する。
UCIとKaggleの様々な合成および実世界のデータセットに対する2つの提案手法の評価を行った。
論文 参考訳(メタデータ) (2023-12-09T12:55:20Z) - Efficient Computation of Sparse and Robust Maximum Association
Estimators [0.5156484100374059]
高次元経験例は、この手順の有用性を裏付けるものである。
ラグランジアンアルゴリズムとスパース降下の組み合わせはスパース空間の誘導に適した制約を含むように実装されている。
論文 参考訳(メタデータ) (2023-11-29T11:57:50Z) - Provably Efficient Learning in Partially Observable Contextual Bandit [4.910658441596583]
古典的帯域幅アルゴリズムの改善に因果境界をどのように適用できるかを示す。
本研究は,実世界の応用における文脈的包括的エージェントの性能を高める可能性を秘めている。
論文 参考訳(メタデータ) (2023-08-07T13:24:50Z) - Multistage Stochastic Optimization via Kernels [3.7565501074323224]
我々は,多段階最適化問題に対する非パラメトリック,データ駆動,トラクタブルアプローチを開発した。
本稿では,提案手法が最適に近い平均性能で決定ルールを生成することを示す。
論文 参考訳(メタデータ) (2023-03-11T23:19:32Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
Predictive Uncertainties [12.068153197381575]
高速収束を達成しつつ、潜在過程間の共分散を維持できる新しい変分族を提案する。
新しいアプローチの効率的な実装を提供し、それをいくつかのベンチマークデータセットに適用します。
優れた結果をもたらし、最先端の代替品よりも精度とキャリブレーションされた不確実性推定とのバランスが良くなる。
論文 参考訳(メタデータ) (2020-05-22T11:10:59Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
単純なアルゴリズムは、多くの文脈において優れた経験的結果をもたらすことが示されている。
いくつかの研究は、非最適化問題を研究するための厳密な分析的正当化を追求している。
これらの分析における重要な洞察は、摂動が局所的な降下アルゴリズムを許容する上で重要な役割を担っていることである。
論文 参考訳(メタデータ) (2020-03-31T16:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。