論文の概要: CiRL: Open-Source Environments for Reinforcement Learning in Circular Economy and Net Zero
- arxiv url: http://arxiv.org/abs/2505.21536v1
- Date: Sat, 24 May 2025 08:26:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.13687
- Title: CiRL: Open-Source Environments for Reinforcement Learning in Circular Economy and Net Zero
- Title(参考訳): CiRL: 循環経済とネットゼロにおける強化学習のためのオープンソース環境
- Authors: Federico Zocco, Andrea Corti, Monica Malvezzi,
- Abstract要約: 固体および流体材料の両方の円度に着目した環境ライブラリであるCiRLを紹介する。
新しいCE指向環境は状態空間であり、通常は動的システム分析と制御設計で使用される。
- 参考スコア(独自算出の注目度): 4.062511856086843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demand of finite raw materials will keep increasing as they fuel modern society. Simultaneously, solutions for stopping carbon emissions in the short term are not available, thus making the net zero target extremely challenging to achieve at scale. The circular economy (CE) paradigm is gaining attention as a solution to address climate change and the uncertainties of supplies of critical materials. Hence, in this paper, we introduce CiRL, a deep reinforcement learning (DRL) library of environments focused on the circularity of both solid and fluid materials. The integration of DRL into the design of material circularity is possible thanks to the formalism of thermodynamical material networks, which is underpinned by compartmental dynamical thermodynamics. Along with the focus on circularity, this library has three more features: the new CE-oriented environments are in the state-space form, which is typically used in dynamical systems analysis and control designs; it is based on a state-of-the-art Python library of DRL algorithms, namely, Stable-Baselines3; and it is developed in Google Colaboratory to be accessible to researchers from different disciplines and backgrounds as is often the case for circular economy researchers and engineers. CiRL is publicly available.
- Abstract(参考訳): 有限資源の需要は、現代社会に燃料を供給し続けます。
同時に、短期的に二酸化炭素排出量を抑えるソリューションは利用できないため、純ゼロ目標を大規模に達成することは極めて困難である。
循環経済(CE)パラダイムは、気候変動と臨界物質の供給の不確実性に対処するための解決策として注目されている。
そこで本稿では, 固体および流体材料の円度に着目した深部強化学習(DRL)ライブラリであるCiRLを紹介する。
物質循環設計へのDRLの統合は、部分的力学熱力学の基盤となる熱力学ネットワークの定式化によって可能となる。
新しいCE指向環境は、一般に動的システム分析と制御設計で使用される状態空間形式であり、DRLアルゴリズムの最先端PythonライブラリであるStable-Baselines3に基づいている。
CiRLは公開されている。
関連論文リスト
- Beyond Accuracy: EcoL2 Metric for Sustainable Neural PDE Solvers [11.268342044762463]
本稿では, PDE の解法範囲に対する二酸化炭素排出対策について紹介する。
提案した指標であるEcoL2は、データ収集、モデルトレーニング、デプロイメントのエミッションとモデル精度のバランスをとる。
規模と展開が拡大するにつれて、EcoL2は、長期的な環境影響の少ない、パフォーマンスの高い科学機械学習システムを構築するための一歩である。
論文 参考訳(メタデータ) (2025-05-18T22:05:11Z) - Hierarchical Multi-Agent Framework for Carbon-Efficient Liquid-Cooled Data Center Clusters [5.335496791443277]
本稿では,Reinforcement Learning (RL) に基づく階層型コントローラを提案するGreen-DCCについて紹介する。
本稿では,複数のデータセンターを同期的に最適化し,デジタル双生児を対象とし,炭素排出量とサステナビリティ指標に基づく様々なRL手法の性能比較を行う。
論文 参考訳(メタデータ) (2025-02-12T12:00:58Z) - A Benchmark Environment for Offline Reinforcement Learning in Racing Games [54.83171948184851]
オフライン強化学習(英語: Offline Reinforcement Learning、ORL)は、従来の強化学習(RL)の高サンプリング複雑さを減らすための有望なアプローチである。
本稿では,ORL研究のための新しい環境であるOfflineManiaを紹介する。
TrackManiaシリーズにインスパイアされ、Unity 3Dゲームエンジンで開発された。
論文 参考訳(メタデータ) (2024-07-12T16:44:03Z) - Sustainability of Data Center Digital Twins with Reinforcement Learning [2.4971633082970377]
機械学習(ML)は、計算能力の需要が増大し、データセンター(DC)が大きくなり、エネルギー消費が増加した。
この問題に対処し、二酸化炭素排出量を減らすために、ITサーバ、キャビネット、HVAC冷却、柔軟な負荷シフト、バッテリーエネルギー貯蔵といったDCコンポーネントの設計と制御が不可欠である。
DCRL-GreenはマルチエージェントのRL環境であり、MLコミュニティがデータセンターを設計し、DCの炭素フットプリント削減のためのRLコントローラを開発し、改良することを可能にする。
論文 参考訳(メタデータ) (2024-04-16T18:22:30Z) - Confidence-Controlled Exploration: Efficient Sparse-Reward Policy Learning for Robot Navigation [72.24964965882783]
強化学習(RL)はロボットナビゲーションにおいて有望なアプローチであり、ロボットは試行錯誤を通じて学習することができる。
現実世界のロボットタスクは、しばしばまばらな報酬に悩まされ、非効率な探索と準最適政策に繋がる。
本稿では,RLに基づくロボットナビゲーションにおいて,報酬関数を変更せずにサンプル効率を向上させる新しい手法であるConfidence-Controlled Exploration (CCE)を紹介する。
論文 参考訳(メタデータ) (2023-06-09T18:45:15Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
強化学習(RL)による制御は、建築エネルギー効率を著しく向上させることが示されている。
我々は、ゼロショットビルディング制御と呼ばれるパラダイムを優先せずに、排出削減ポリシーを得られることを示す。
論文 参考訳(メタデータ) (2022-08-12T17:13:25Z) - GriddlyJS: A Web IDE for Reinforcement Learning [7.704064306361941]
GriddlyエンジンをベースとしたWebベースの統合開発環境(IDE)であるGriddlyJSを紹介します。
GriddlyJSは、任意の複雑なPCGグリッドワールド環境を視覚的に設計し、デバッグすることを可能にする。
RLワークフローをモダンなWeb標準によって実現された高度な機能に接続することで、GriddlyJSはインタラクティブなエージェント環境のデモを公開することができる。
論文 参考訳(メタデータ) (2022-07-13T10:26:38Z) - An Energy and Carbon Footprint Analysis of Distributed and Federated
Learning [42.37180749113699]
古典的で中央集権的な人工知能(AI)手法では、生産者(センサー、マシン)からエネルギー空腹のデータセンターへデータを移動する必要がある。
このような高エネルギーコストを緩和する新たな代替手段は、デバイス間で学習タスクを効率的に分散またはフェデレートすることを提案している。
本稿では,分散学習におけるエネルギーおよび炭素フットプリントの分析のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-06-21T13:28:49Z) - Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge
Intelligence [76.96698721128406]
モバイルエッジコンピューティング(MEC)は、第5世代(5G)ネットワークなどにおける計算と遅延に敏感なタスクのための新しいパラダイムであると考えた。
本稿では、フリー対応RLに関する総合的な研究レビューと、開発のための洞察を提供する。
論文 参考訳(メタデータ) (2022-01-27T10:02:54Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。