論文の概要: Beyond Accuracy: EcoL2 Metric for Sustainable Neural PDE Solvers
- arxiv url: http://arxiv.org/abs/2505.12556v1
- Date: Sun, 18 May 2025 22:05:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.307277
- Title: Beyond Accuracy: EcoL2 Metric for Sustainable Neural PDE Solvers
- Title(参考訳): EcoL2 Metric for Sustainable Neural PDE Solvers
- Authors: Taniya Kapoor, Abhishek Chandra, Anastasios Stamou, Stephen J Roberts,
- Abstract要約: 本稿では, PDE の解法範囲に対する二酸化炭素排出対策について紹介する。
提案した指標であるEcoL2は、データ収集、モデルトレーニング、デプロイメントのエミッションとモデル精度のバランスをとる。
規模と展開が拡大するにつれて、EcoL2は、長期的な環境影響の少ない、パフォーマンスの高い科学機械学習システムを構築するための一歩である。
- 参考スコア(独自算出の注目度): 11.268342044762463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world systems, from aerospace to railway engineering, are modeled with partial differential equations (PDEs) describing the physics of the system. Estimating robust solutions for such problems is essential. Deep learning-based architectures, such as neural PDE solvers, have recently gained traction as a reliable solution method. The current state of development of these approaches, however, primarily focuses on improving accuracy. The environmental impact of excessive computation, leading to increased carbon emissions, has largely been overlooked. This paper introduces a carbon emission measure for a range of PDE solvers. Our proposed metric, EcoL2, balances model accuracy with emissions across data collection, model training, and deployment. Experiments across both physics-informed machine learning and operator learning architectures demonstrate that the proposed metric presents a holistic assessment of model performance and emission cost. As such solvers grow in scale and deployment, EcoL2 represents a step toward building performant scientific machine learning systems with lower long-term environmental impact.
- Abstract(参考訳): 実世界のシステムは、航空宇宙から鉄道工学まで、系の物理を記述する偏微分方程式(PDE)でモデル化されている。
このような問題に対する堅牢な解決策を推定することが不可欠である。
ニューラルPDEソルバのようなディープラーニングベースのアーキテクチャは、信頼性の高い解法として最近注目を集めている。
しかし、これらのアプローチの現況は、主に精度の向上に焦点を当てている。
過剰な計算による環境への影響は、二酸化炭素排出量の増加につながるが、ほとんど見過ごされている。
本稿では, PDE の解法における二酸化炭素排出対策について紹介する。
提案した指標であるEcoL2は、データ収集、モデルトレーニング、デプロイメントのエミッションとモデル精度のバランスをとる。
物理インフォームド機械学習と演算子学習アーキテクチャの両方の実験により、提案手法がモデル性能と排出コストの総合的な評価を示すことを示した。
規模と展開が拡大するにつれて、EcoL2は、長期的な環境影響の少ない、パフォーマンスの高い科学機械学習システムを構築するための一歩である。
関連論文リスト
- Fourier Neural Operator based surrogates for $CO_2$ storage in realistic geologies [57.23978190717341]
我々は,$CO$ plume マイグレーションのリアルタイム・高分解能シミュレーションのためのニューラル演算子(FNO)モデルを開発した。
このモデルは、現実的な地下パラメータから生成された包括的なデータセットに基づいて訓練される。
本稿では,実際の地質学的位置を評価する上で重要なモデルから予測の信頼性を向上させるための様々な戦略を提案する。
論文 参考訳(メタデータ) (2025-03-14T02:58:24Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Efficient Materials Informatics between Rockets and Electrons [0.0]
この論文は、超高温耐火高エントロピー合金(RHEA)を組み込んだ機能性グレード材料(FGM)の設計に焦点を当てている。
原子レベルでは、MPDDと呼ばれる450万以上の緩和された構造から機械学習(ML)に最適化されたデータエコシステムが、実験的な観察を知らせ、熱力学モデルを改善するために使用される。
結果として生じるマルチレベル発見インフラストラクチャは、既存のソリューションを探すのではなく、問題のエンコーディングに重点を置いているため、非常に一般化可能である。
論文 参考訳(メタデータ) (2024-07-05T17:03:26Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
特に炭素フットプリントが高い大言語モデルのCO2排出量について検討した。
我々は, 二酸化炭素排出削減対策を提案することによって, 責任と持続性を有するLLMの育成を議論する。
論文 参考訳(メタデータ) (2024-04-01T15:01:45Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
機械学習(ML)は、モデルトレーニングプロセス中に計算を実行するためにエネルギーを使用する必要がある。
このエネルギーの生成には、使用量やエネルギー源によって、温室効果ガスの排出という観点からの環境コストが伴う。
本稿では,自然言語処理とコンピュータビジョンにおいて,95のMLモデルの炭素排出量の時間的および異なるタスクに関する調査を行う。
論文 参考訳(メタデータ) (2023-02-16T18:35:00Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
物理構造を符号化するディープラーニングフレームワークが,PDEシステム体制に関する様々な問題に適用可能であることを示す。
物理を符号化する結果の学習パラダイムは、広範囲な数値実験により、高い精度、堅牢性、解釈可能性、一般化可能性を示す。
論文 参考訳(メタデータ) (2021-06-09T03:02:20Z) - APIK: Active Physics-Informed Kriging Model with Partial Differential
Equations [6.918364447822299]
本稿では,PDEポイントの集合を介してPDE情報を導入し,標準クリグ法と同様の後方予測を行うPDE Informed Kriging Model (PIK)を提案する。
学習性能をさらに向上させるために,PDEポイントをデザインし,PIKモデルと測定データに基づいたPDE情報を活用するアクティブPIKフレームワーク(APIK)を提案する。
論文 参考訳(メタデータ) (2020-12-22T02:31:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。