論文の概要: Fluent but Foreign: Even Regional LLMs Lack Cultural Alignment
- arxiv url: http://arxiv.org/abs/2505.21548v2
- Date: Sun, 21 Sep 2025 19:54:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 14:36:45.188415
- Title: Fluent but Foreign: Even Regional LLMs Lack Cultural Alignment
- Title(参考訳): 華やかだが外国人:地域LLMでさえ文化的アライメントの欠如
- Authors: Dhruv Agarwal, Anya Shukla, Sunayana Sitaram, Aditya Vashistha,
- Abstract要約: 大規模な言語モデル(LLM)は世界中で使用されているが、西洋文化の傾向を示す。
我々は,6つの指標と6つのグローバルLLMを2次元(値とプラクティス)で評価する。
タスク全体では、Indicモデルはグローバルモデルよりもインド標準とよく一致しない。
- 参考スコア(独自算出の注目度): 24.871503011248777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are used worldwide, yet exhibit Western cultural tendencies. Many countries are now building ``regional'' LLMs, but it remains unclear whether they reflect local values and practices or merely speak local languages. Using India as a case study, we evaluate six Indic and six global LLMs on two dimensions -- values and practices -- grounded in nationally representative surveys and community-sourced QA datasets. Across tasks, Indic models do not align better with Indian norms than global models; in fact, a U.S. respondent is a closer proxy for Indian values than any Indic model. Prompting and regional fine-tuning fail to recover alignment and can even degrade existing knowledge. We attribute this to scarce culturally grounded data, especially for pretraining. We position cultural evaluation as a first-class requirement alongside multilingual benchmarks and offer a reusable, community-grounded methodology. We call for native, community-authored corpora and thick x wide evaluations to build truly sovereign LLMs.
- Abstract(参考訳): 大規模な言語モデル(LLM)は世界中で使用されているが、西洋文化の傾向を示す。
現在、多くの国で「地域」のLLMが構築されているが、現地の価値観や慣行を反映しているか、単に現地語を話すだけなのかは定かではない。
インドをケーススタディとして、全国的に代表される調査とコミュニティソースのQAデータセットに基づいて、2つの次元(価値とプラクティス)で6つのインデックスと6つのグローバルLCMを評価します。
タスク全体では、Indicモデルはグローバルモデルよりもインドのノルムとよく一致していない; 実際、米国の応答者は、どのIndicモデルよりもインディアンの値のより近いプロキシである。
プロンプティングと地域微調整はアライメントの回復に失敗し、既存の知識を損なうことさえできる。
これは文化的根拠の少ないデータであり、特に事前訓練のためである。
我々は,文化評価を多言語ベンチマークと並んで第一級の要件と位置づけ,再利用可能なコミュニティ基盤の方法論を提供する。
私たちは、真に主権のあるLLMを構築するために、ネイティブでコミュニティが認可したコーポラと厚いx幅の評価を要求します。
関連論文リスト
- From Surveys to Narratives: Rethinking Cultural Value Adaptation in LLMs [57.43233760384488]
LLM(Large Language Models)における文化的価値の適応は大きな課題である。
これまでの作業は主に、World Values Survey (WVS)データを使用して、LLMをさまざまな文化的価値と整合させる。
本稿では,文化価値適応のためのWVSベースのトレーニングについて検討し,調査データのみに頼って文化規範を把握し,事実知識に干渉することを見出した。
論文 参考訳(メタデータ) (2025-05-22T09:00:01Z) - CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization [50.90288681622152]
大規模言語モデル(LLM)は、より深く様々な地域における人間の生活に統合される。
既存のアプローチは、文化固有のコーパスを微調整することで、文化的に整合したLCMを開発する。
本稿では,新しい文化データ構築フレームワークであるCAReDiOを紹介する。
論文 参考訳(メタデータ) (2025-04-09T13:40:13Z) - CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries [63.00147630084146]
視覚言語モデル(VLM)は高度な人間とAIの相互作用を持つが、文化的な理解に苦慮している。
CultureVerseは大規模なマルチモーダルベンチマークで、682の文化的概念、188の国/地域、15の文化的概念、3の質問タイプをカバーしている。
本稿では,文化理解の大幅な向上を実現するために,我々のデータセットを微調整したVLMのシリーズであるCultureVLMを提案する。
論文 参考訳(メタデータ) (2025-01-02T14:42:37Z) - Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMはますますグローバルなアプリケーションにデプロイされ、さまざまなバックグラウンドを持つユーザが尊敬され、理解されることが保証される。
文化的な害は、これらのモデルが特定の文化的規範と一致しないときに起こり、文化的な価値観の誤った表現や違反をもたらす。
潜在的な文化的不感を露呈するシナリオを通じて、異なる文化的文脈におけるモデルアウトプットを評価するために作成された文化的調和テストデータセットと、多様なアノテータからのフィードバックに基づいた微調整による文化的感受性の回復を目的とした、文化的に整合した選好データセットである。
論文 参考訳(メタデータ) (2024-10-15T18:13:10Z) - Self-Alignment: Improving Alignment of Cultural Values in LLMs via In-Context Learning [13.034603322224548]
In-context Learning(ICL)とヒューマンサーベイデータを組み合わせた簡易で安価な手法を提案する。
本手法は、英語以外のテスト言語で有用であることが証明され、文化的に多種多様な国に対応する文化的価値との整合性を向上させることができる。
論文 参考訳(メタデータ) (2024-08-29T12:18:04Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - NormAd: A Framework for Measuring the Cultural Adaptability of Large Language Models [26.64843536942309]
大規模言語モデル(LLM)は、ユーザ価値や文化にアウトプットを適応させる必要があります。
LLMの文化的適応性を評価するための評価フレームワークであるNormAdを紹介する。
我々はNormAd-Etiを作成した。これは、75か国における、社会的な倫理的関連文化規範を表す2.6kの状況記述のベンチマークである。
論文 参考訳(メタデータ) (2024-04-18T18:48:50Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
110か国・地域での3つのSOTAモデルの文化認識を,文化条件付き世代を通して8つの文化関連トピックについて明らかにした。
文化条件付き世代は、デフォルトの文化と区別される余分な文化を区別する言語的な「マーカー」から成り立っていることが判明した。
論文 参考訳(メタデータ) (2024-04-16T00:50:43Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
本研究は,ホフステデの文化次元の枠組みを用いて文化的アライメントを定量化する文化アライメントテスト (Hoftede's CAT) を提案する。
我々は、米国、中国、アラブ諸国といった地域の文化的側面に対して、大規模言語モデル(LLM)を定量的に評価する。
その結果, LLMの文化的アライメントを定量化し, 説明的文化的次元におけるLCMの差異を明らかにすることができた。
論文 参考訳(メタデータ) (2023-08-25T14:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。