CogAD: Cognitive-Hierarchy Guided End-to-End Autonomous Driving
- URL: http://arxiv.org/abs/2505.21581v2
- Date: Sun, 01 Jun 2025 02:19:21 GMT
- Title: CogAD: Cognitive-Hierarchy Guided End-to-End Autonomous Driving
- Authors: Zhennan Wang, Jianing Teng, Canqun Xiang, Kangliang Chen, Xing Pan, Lu Deng, Weihao Gu,
- Abstract summary: We propose CogAD, a novel end-to-end autonomous driving model that emulates the hierarchical cognition mechanisms of human drivers.<n>CogAD implements dual hierarchical mechanisms: global-to-local context processing for human-like perception and intent-conditioned multi-mode trajectory generation for cognitively-inspired planning.<n>CogAD achieves state-of-the-art performance in end-to-end planning, exhibiting particular superiority in long-tail scenarios and robust generalization to complex real-world driving conditions.
- Score: 6.110160289067008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While end-to-end autonomous driving has advanced significantly, prevailing methods remain fundamentally misaligned with human cognitive principles in both perception and planning. In this paper, we propose CogAD, a novel end-to-end autonomous driving model that emulates the hierarchical cognition mechanisms of human drivers. CogAD implements dual hierarchical mechanisms: global-to-local context processing for human-like perception and intent-conditioned multi-mode trajectory generation for cognitively-inspired planning. The proposed method demonstrates three principal advantages: comprehensive environmental understanding through hierarchical perception, robust planning exploration enabled by multi-level planning, and diverse yet reasonable multi-modal trajectory generation facilitated by dual-level uncertainty modeling. Extensive experiments on nuScenes and Bench2Drive demonstrate that CogAD achieves state-of-the-art performance in end-to-end planning, exhibiting particular superiority in long-tail scenarios and robust generalization to complex real-world driving conditions.
Related papers
- ReAL-AD: Towards Human-Like Reasoning in End-to-End Autonomous Driving [27.75047397292818]
End-to-end autonomous driving has emerged as a promising approach to unify perception, prediction, and planning within a single framework.<n>We propose ReAL-AD, a Reasoning-Augmented Learning framework that structures decision-making in autonomous driving based on the three-tier human cognitive model.<n>We show that integrating our framework improves planning accuracy and safety by over 30%, making end-to-end autonomous driving more interpretable and aligned with human-like hierarchical reasoning.
arXiv Detail & Related papers (2025-07-16T02:23:24Z) - LeAD: The LLM Enhanced Planning System Converged with End-to-end Autonomous Driving [48.607991747956255]
We present LeAD, a dual-rate autonomous driving architecture integrating imitation learning-based end-to-end (E2E) frameworks with large language model (LLM) augmentation.<n>Our experimental evaluation in the CARLA Simulator demonstrates LeAD's superior handling of unconventional scenarios, achieving 71 points on Leaderboard V1 benchmark, with a route completion of 93%.
arXiv Detail & Related papers (2025-07-08T07:58:29Z) - DiffAD: A Unified Diffusion Modeling Approach for Autonomous Driving [17.939192289319056]
We introduce DiffAD, a novel diffusion probabilistic model that redefines autonomous driving as a conditional image generation task.<n>Byizing heterogeneous targets onto a unified bird's-eye view (BEV) and modeling their latent distribution, DiffAD unifies various driving objectives.<n>The reverse process iteratively refines the generated BEV image, resulting in more robust and realistic driving behaviors.
arXiv Detail & Related papers (2025-03-15T15:23:35Z) - Diffusion-Based Planning for Autonomous Driving with Flexible Guidance [19.204115959760788]
We propose a novel transformer-based Diffusion Planner for closed-loop planning.<n>Our model supports joint modeling of both prediction and planning tasks.<n>It achieves state-of-the-art closed-loop performance with robust transferability in diverse driving styles.
arXiv Detail & Related papers (2025-01-26T15:49:50Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WM is the first driving world model compatible with existing end-to-end planning models.
Our model generates high-fidelity multiview videos in driving scenes.
arXiv Detail & Related papers (2023-11-29T18:59:47Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - Interpretable Motion Planner for Urban Driving via Hierarchical
Imitation Learning [5.280496662905411]
We introduce a hierarchical planning architecture including a high-level grid-based behavior planner and a low-level trajectory planner.
As the high-level planner is responsible for finding a consistent route, the low-level planner generates a feasible trajectory.
We evaluate our method both in closed-loop simulation and real world driving, and demonstrate the neural network planner has outstanding performance.
arXiv Detail & Related papers (2023-03-24T13:18:40Z) - Planning-oriented Autonomous Driving [60.93767791255728]
We argue that a favorable framework should be devised and optimized in pursuit of the ultimate goal, i.e., planning of the self-driving car.
We introduce Unified Autonomous Driving (UniAD), a comprehensive framework that incorporates full-stack driving tasks in one network.
arXiv Detail & Related papers (2022-12-20T10:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.