Revisiting Bayesian Model Averaging in the Era of Foundation Models
- URL: http://arxiv.org/abs/2505.21857v1
- Date: Wed, 28 May 2025 01:03:28 GMT
- Title: Revisiting Bayesian Model Averaging in the Era of Foundation Models
- Authors: Mijung Park,
- Abstract summary: We revisit the classical, full-fledged Bayesian model averaging (BMA) paradigm to ensemble pre-trained and/or lightly-finetuned foundation models.<n>We introduce trainable linear classifiers that take frozen features from the pre-trained foundation models as inputs.
- Score: 4.867923281108005
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We revisit the classical, full-fledged Bayesian model averaging (BMA) paradigm to ensemble pre-trained and/or lightly-finetuned foundation models to enhance the classification performance on image and text data. To make BMA tractable under foundation models, we introduce trainable linear classifiers that take frozen features from the pre-trained foundation models as inputs. The model posteriors over the linear classifiers tell us which linear heads and frozen features are better suited for a given dataset, resulting in a principled model ensembling method. Furthermore, we propose a computationally cheaper, optimizable model averaging scheme (OMA). In OMA, we directly optimize the model ensemble weights, just like those weights based on model posterior distributions in BMA, by reducing the amount of surprise (expected entropy of the predictions) we get from predictions of ensembled models. With the rapid development of foundation models, these approaches will enable the incorporation of future, possibly significantly better foundation models to enhance the performance of challenging classification tasks.
Related papers
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model performance.<n>This paper addresses the question of how to optimally combine the model's predictions and the provided labels.<n>Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels.
arXiv Detail & Related papers (2025-05-21T07:16:44Z) - Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.<n>We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.<n>Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment [51.14207112118503]
We introduce preference embedding, an approach that embeds responses into a latent space to capture preferences efficiently.<n>We also propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback.<n>Our method may enhance the alignment of foundation models with nuanced human values.
arXiv Detail & Related papers (2024-10-03T04:22:55Z) - Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling [7.084307990641011]
We introduce a novel approach that combines diffusion techniques and implicit priors for variational learning of Bayesian last layer weights.
By delivering an explicit and computationally efficient variational lower bound, our method aims to augment the expressive abilities of BLL models.
arXiv Detail & Related papers (2024-08-07T12:59:58Z) - BayesBlend: Easy Model Blending using Pseudo-Bayesian Model Averaging, Stacking and Hierarchical Stacking in Python [0.0]
We introduce the BayesBlend Python package to estimate weights and blend multiple (Bayesian) models' predictive distributions.
BayesBlend implements pseudo-Bayesian model averaging, stacking and, uniquely, hierarchical Bayesian stacking to estimate model weights.
We demonstrate the usage of BayesBlend with examples of insurance loss modeling.
arXiv Detail & Related papers (2024-04-30T19:15:33Z) - Model Stock: All we need is just a few fine-tuned models [34.449901046895185]
This paper introduces an efficient fine-tuning method for large pre-trained models, offering strong in-distribution (ID) and out-of-distribution (OOD) performance.
We employ significantly fewer models to achieve final weights yet yield superior accuracy.
We demonstrate the efficacy of Model Stock with fine-tuned models based upon pre-trained CLIP architectures.
arXiv Detail & Related papers (2024-03-28T15:57:20Z) - Local Bayesian Dirichlet mixing of imperfect models [0.0]
We study the ability of Bayesian model averaging and mixing techniques to mine nuclear masses.
We show that the global and local mixtures of models reach excellent performance on both prediction accuracy and uncertainty quantification.
arXiv Detail & Related papers (2023-11-02T21:02:40Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [47.432215933099016]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.<n>This creates a barrier to fusing knowledge across individual models to yield a better single model.<n>We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.