論文の概要: From Coders to Critics: Empowering Students through Peer Assessment in the Age of AI Copilots
- arxiv url: http://arxiv.org/abs/2505.22093v1
- Date: Wed, 28 May 2025 08:17:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.48968
- Title: From Coders to Critics: Empowering Students through Peer Assessment in the Age of AI Copilots
- Title(参考訳): プログラマーから批判へ:AIコパイロット時代における学生のピアアセスメントを通じて学生に力を与える
- Authors: Santiago Berrezueta-Guzman, Stephan Krusche, Stefan Wagner,
- Abstract要約: 本稿では,大規模プログラミングコースで実装されたルーリックベースで匿名化されたピアレビュープロセスについて,実証的研究を行う。
学生同士の最終プロジェクト(2Dゲーム)を評価し,その評価を,相関,平均絶対誤差,根平均二乗誤差(RMSE)を用いたインストラクターの成績と比較した。
その結果、ピアレビューは、インストラクターの評価を適度な精度で近似し、学生のエンゲージメント、評価的思考、そして仲間に良いフィードバックを提供することへの関心を高めることができた。
- 参考スコア(独自算出の注目度): 3.3094795918443634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid adoption of AI powered coding assistants like ChatGPT and other coding copilots is transforming programming education, raising questions about assessment practices, academic integrity, and skill development. As educators seek alternatives to traditional grading methods susceptible to AI enabled plagiarism, structured peer assessment could be a promising strategy. This paper presents an empirical study of a rubric based, anonymized peer review process implemented in a large introductory programming course. Students evaluated each other's final projects (2D game), and their assessments were compared to instructor grades using correlation, mean absolute error, and root mean square error (RMSE). Additionally, reflective surveys from 47 teams captured student perceptions of fairness, grading behavior, and preferences regarding grade aggregation. Results show that peer review can approximate instructor evaluation with moderate accuracy and foster student engagement, evaluative thinking, and interest in providing good feedback to their peers. We discuss these findings for designing scalable, trustworthy peer assessment systems to face the age of AI assisted coding.
- Abstract(参考訳): ChatGPTなどのAIによるコーディングアシスタントの急速な採用は、プログラミング教育を変革させ、アセスメントプラクティスや学術的完全性、スキル開発に関する疑問を提起している。
教育者は、AIによって実現された盗作行為に影響を受けやすい従来のグレーティング手法に代わる方法を模索するので、構造化されたピアアセスメントは有望な戦略かもしれない。
本稿では,大規模なプログラミングコースにおいて実装されたルーリックベースで匿名化されたピアレビュープロセスについて,実証的研究を行う。
学生は最終プロジェクト(2Dゲーム)を評価し,その評価を相関,平均絶対誤差,根平均二乗誤差(RMSE)を用いたインストラクターの成績と比較した。
さらに、47チームによる反射調査では、学生の公正感、格付け行動、グレードアグリゲーションに関する嗜好を捉えた。
その結果、ピアレビューは、インストラクターの評価を適度な精度で近似し、学生のエンゲージメント、評価的思考、そして仲間に良いフィードバックを提供することへの関心を高めることができた。
スケーラブルで信頼性の高いピアアセスメントシステムを設計し、AI支援コーディングの時代に直面するためのこれらの知見について論じる。
関連論文リスト
- Identifying Aspects in Peer Reviews [61.374437855024844]
我々は、ピアレビューのコーパスからきめ細かいアスペクトを抽出するデータ駆動型スキーマを開発した。
我々は、アスペクトを付加したピアレビューのデータセットを導入し、コミュニティレベルのレビュー分析にどのように使用できるかを示す。
論文 参考訳(メタデータ) (2025-04-09T14:14:42Z) - Level Up Peer Review in Education: Investigating genAI-driven Gamification system and its influence on Peer Feedback Effectiveness [0.8087870525861938]
本稿では、Generative AI(GenAI)アシストと統合されたゲーミフィケーションピアアセスメントプラットフォームであるSocratiqueを紹介する。
Socratiqueはゲーム要素を取り入れることで、学生により多くのフィードバックを提供する動機付けを目指している。
治療群では, 明瞭度, 関連性, 特異性について, より自発的なフィードバックが得られた。
論文 参考訳(メタデータ) (2025-04-03T18:30:25Z) - Identifying Student Profiles Within Online Judge Systems Using
Explainable Artificial Intelligence [6.638206014723678]
オンライン審査員(OJ)システムは通常、学生によって開発されたコードの高速かつ客観的な評価を得られるため、プログラミング関連のコースの中で考慮される。
本研究の目的は,OJが収集した情報のさらなる活用を考慮し,学生とインストラクターの両方のフィードバックを自動的に推測することで,この制限に対処することである。
論文 参考訳(メタデータ) (2024-01-29T12:11:30Z) - Student Mastery or AI Deception? Analyzing ChatGPT's Assessment
Proficiency and Evaluating Detection Strategies [1.633179643849375]
ChatGPTのような生成AIシステムは、学習と評価に破壊的な影響を及ぼす。
本研究では,ChatGPTを3つのコースに分けて評価することで,ChatGPTの性能を評価する。
論文 参考訳(メタデータ) (2023-11-27T20:10:13Z) - Modelling Assessment Rubrics through Bayesian Networks: a Pragmatic Approach [40.06500618820166]
本稿では,学習者モデルを直接評価ルーリックから導出する手法を提案する。
本稿では,コンピュータ思考のスキルをテストするために開発された活動の人的評価を自動化するために,この手法を適用する方法について述べる。
論文 参考訳(メタデータ) (2022-09-07T10:09:12Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
我々はこれをピアレビューテキストとレビュアースコアに基づく論文ランキング問題とみなした。
ピアレビューに基づいて最終決定を行うための,新しい多面的総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-02T19:41:47Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Effects of Human vs. Automatic Feedback on Students' Understanding of AI
Concepts and Programming Style [0.0]
自動階調ツールの使用は、大規模な学部プログラミングコースにおいてほぼどこでも行われている。
コンピュータによるフィードバックと人間によるフィードバックを受け取った場合、生徒の成果を直接比較するデータは比較的不足している。
本稿では,90名の生徒を2つのフィードバックグループに分割し,2つのコホートのパフォーマンスの違いを分析することで,このギャップを解消する。
論文 参考訳(メタデータ) (2020-11-20T21:40:32Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - Code Review in the Classroom [57.300604527924015]
教室設定の若い開発者は、コードレビュープロセスの潜在的に有利で問題のある領域の明確な図を提供している。
彼らのフィードバックは、プロセスはプロセスを改善するためにいくつかのポイントで十分に受け入れられていることを示唆している。
本論文は,教室でコードレビューを行うためのガイドラインとして利用することができる。
論文 参考訳(メタデータ) (2020-04-19T06:07:45Z) - Leveraging Peer Feedback to Improve Visualization Education [4.679788938455095]
コンピュータ科学の可視化コースにおけるピアレビューの構築と適用について論じる。
大学生と大学院の混成科目3学年を対象に, 学生プロジェクト, ピアレビューテキスト, ポストコース質問紙の評価を行った。
論文 参考訳(メタデータ) (2020-01-12T21:46:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。