ReliableEval: A Recipe for Stochastic LLM Evaluation via Method of Moments
- URL: http://arxiv.org/abs/2505.22169v1
- Date: Wed, 28 May 2025 09:40:48 GMT
- Title: ReliableEval: A Recipe for Stochastic LLM Evaluation via Method of Moments
- Authors: Gili Lior, Eliya Habba, Shahar Levy, Avi Caciularu, Gabriel Stanovsky,
- Abstract summary: We argue for a method of moments evaluation over the space of meaning-preserving prompt perturbations.<n>We show that even top-performing models like GPT-4o and Claude-3.7-Sonnet exhibit substantial prompt sensitivity.
- Score: 21.37415398600286
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LLMs are highly sensitive to prompt phrasing, yet standard benchmarks typically report performance using a single prompt, raising concerns about the reliability of such evaluations. In this work, we argue for a stochastic method of moments evaluation over the space of meaning-preserving prompt perturbations. We introduce a formal definition of reliable evaluation that accounts for prompt sensitivity, and suggest ReliableEval - a method for estimating the number of prompt resamplings needed to obtain meaningful results. Using our framework, we stochastically evaluate five frontier LLMs and find that even top-performing models like GPT-4o and Claude-3.7-Sonnet exhibit substantial prompt sensitivity. Our approach is model-, task-, and metric-agnostic, offering a recipe for meaningful and robust LLM evaluation.
Related papers
- RAG-Zeval: Towards Robust and Interpretable Evaluation on RAG Responses through End-to-End Rule-Guided Reasoning [64.46921169261852]
RAG-Zeval is a novel end-to-end framework that formulates faithfulness and correctness evaluation as a rule-guided reasoning task.<n>Our approach trains evaluators with reinforcement learning, facilitating compact models to generate comprehensive and sound assessments.<n>Experiments demonstrate RAG-Zeval's superior performance, achieving the strongest correlation with human judgments.
arXiv Detail & Related papers (2025-05-28T14:55:33Z) - Estimating LLM Consistency: A User Baseline vs Surrogate Metrics [7.902385931726113]
Large language models (LLMs) are prone to hallucinations and sensitive to prompt perturbations.<n>We propose a logit-based ensemble method for estimating LLM consistency.
arXiv Detail & Related papers (2025-05-26T16:53:47Z) - FLEX: A Benchmark for Evaluating Robustness of Fairness in Large Language Models [7.221774553388335]
We introduce a new benchmark to test whether Large Language Models can sustain fairness even when exposed to prompts constructed to induce bias.<n>We integrate prompts that amplify potential biases into the fairness assessment.<n>This highlights the need for more stringent evaluation benchmarks to guarantee safety and fairness.
arXiv Detail & Related papers (2025-03-25T10:48:33Z) - On Verbalized Confidence Scores for LLMs [25.160810008907397]
Uncertainty quantification for large language models (LLMs) can establish more human trust into their responses.<n>This work focuses on asking the LLM itself to verbalize its uncertainty with a confidence score as part of its output tokens.<n>We assess the reliability of verbalized confidence scores with respect to different datasets, models, and prompt methods.
arXiv Detail & Related papers (2024-12-19T11:10:36Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
Large Language Models (LLMs) can serve as automatic evaluators for non-standardized metrics in summarization and dialog-based tasks.<n>We conduct experiments across multiple prompting strategies to examine how LLMs fare as quality evaluators when compared with human judgments.
arXiv Detail & Related papers (2024-12-12T13:31:58Z) - SelfPrompt: Autonomously Evaluating LLM Robustness via Domain-Constrained Knowledge Guidelines and Refined Adversarial Prompts [0.6291443816903801]
This paper introduces a novel framework designed to autonomously evaluate the robustness of large language models (LLMs)<n>Our method generates descriptive sentences from domain-constrained knowledge graph triplets to formulate adversarial prompts.<n>This self-evaluation mechanism allows the LLM to evaluate its robustness without the need for external benchmarks.
arXiv Detail & Related papers (2024-12-01T10:58:53Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Bench is a proposed benchmark for evaluating large language models' (LLMs) ability to recognize and reject unsafe user requests.<n>First, existing methods often use coarse-grained taxonomy of unsafe topics, and are over-representing some fine-grained topics.<n>Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions [10.28688988951815]
UBENCH is a benchmark for evaluating large language models.
It includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities.
We also evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding.
arXiv Detail & Related papers (2024-06-18T16:50:38Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - How Reliable Are Automatic Evaluation Methods for Instruction-Tuned LLMs? [3.1706553206969925]
We perform a meta-evaluation of such methods and assess their reliability across a broad range of tasks.
We observe that while automatic evaluation methods can approximate human ratings under specific conditions, their validity is highly context-dependent.
Our findings enhance the understanding of how automatic methods should be applied and interpreted when developing and evaluating instruction-tuned LLMs.
arXiv Detail & Related papers (2024-02-16T15:48:33Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Flames: Benchmarking Value Alignment of LLMs in Chinese [86.73527292670308]
This paper proposes a value alignment benchmark named Flames.
It encompasses both common harmlessness principles and a unique morality dimension that integrates specific Chinese values.
Our findings indicate that all the evaluated LLMs demonstrate relatively poor performance on Flames.
arXiv Detail & Related papers (2023-11-12T17:18:21Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.