YH-MINER: Multimodal Intelligent System for Natural Ecological Reef Metric Extraction
- URL: http://arxiv.org/abs/2505.22250v2
- Date: Thu, 29 May 2025 04:26:18 GMT
- Title: YH-MINER: Multimodal Intelligent System for Natural Ecological Reef Metric Extraction
- Authors: Mingzhuang Wang, Yvyang Li, Xiyang Zhang, Fei Tan, Qi Shi, Guotao Zhang, Siqi Chen, Yufei Liu, Lei Lei, Ming Zhou, Qiang Lin, Hongqiang Yang,
- Abstract summary: Coral reefs, crucial for sustaining marine biodiversity and ecological processes, face escalating threats.<n>This study develops the YH-MINER system, establishing an intelligent framework for "object detection-semantic segmentation-prior input"<n>The system achieves genus-level classification accuracy of 88% and simultaneously extracting core ecological metrics.
- Score: 23.4289262373633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coral reefs, crucial for sustaining marine biodiversity and ecological processes (e.g., nutrient cycling, habitat provision), face escalating threats, underscoring the need for efficient monitoring. Coral reef ecological monitoring faces dual challenges of low efficiency in manual analysis and insufficient segmentation accuracy in complex underwater scenarios. This study develops the YH-MINER system, establishing an intelligent framework centered on the Multimodal Large Model (MLLM) for "object detection-semantic segmentation-prior input". The system uses the object detection module (mAP@0.5=0.78) to generate spatial prior boxes for coral instances, driving the segment module to complete pixel-level segmentation in low-light and densely occluded scenarios. The segmentation masks and finetuned classification instructions are fed into the Qwen2-VL-based multimodal model as prior inputs, achieving a genus-level classification accuracy of 88% and simultaneously extracting core ecological metrics. Meanwhile, the system retains the scalability of the multimodal model through standardized interfaces, laying a foundation for future integration into multimodal agent-based underwater robots and supporting the full-process automation of "image acquisition-prior generation-real-time analysis".
Related papers
- FishDet-M: A Unified Large-Scale Benchmark for Robust Fish Detection and CLIP-Guided Model Selection in Diverse Aquatic Visual Domains [1.3791394805787949]
FishDet-M is the largest unified benchmark for fish detection, comprising 13 publicly available datasets spanning diverse aquatic environments.<n>All data are harmonized using COCO-style annotations with both bounding boxes and segmentation masks.<n>FishDet-M establishes a standardized and reproducible platform for evaluating object detection in complex aquatic scenes.
arXiv Detail & Related papers (2025-07-23T18:32:01Z) - SAMamba: Adaptive State Space Modeling with Hierarchical Vision for Infrared Small Target Detection [12.964308630328688]
Infrared small target detection (ISTD) is vital for long-range surveillance in military, maritime, and early warning applications.<n>ISTD is challenged by targets occupying less than 0.15% of the image and low distinguishability from complex backgrounds.<n>This paper presents SAMamba, a novel framework integrating SAM2's hierarchical feature learning with Mamba's selective sequence modeling.
arXiv Detail & Related papers (2025-05-29T07:55:23Z) - RD-UIE: Relation-Driven State Space Modeling for Underwater Image Enhancement [59.364418120895]
Underwater image enhancement (UIE) is a critical preprocessing step for marine vision applications.<n>We develop a novel relation-driven Mamba framework for effective UIE (RD-UIE)<n>Experiments on underwater enhancement benchmarks demonstrate RD-UIE outperforms the state-of-the-art approach WMamba.
arXiv Detail & Related papers (2025-05-02T12:21:44Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.<n>This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - Towards Interpretable Physical-Conceptual Catchment-Scale Hydrological Modeling using the Mass-Conserving-Perceptron [1.1510009152620668]
This study sets the stage for interpretable regional-scale MCP-based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes.
arXiv Detail & Related papers (2024-01-25T21:26:49Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Learning Multiscale Consistency for Self-supervised Electron Microscopy
Instance Segmentation [48.267001230607306]
We propose a pretraining framework that enhances multiscale consistency in EM volumes.
Our approach leverages a Siamese network architecture, integrating strong and weak data augmentations.
It effectively captures voxel and feature consistency, showing promise for learning transferable representations for EM analysis.
arXiv Detail & Related papers (2023-08-19T05:49:13Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
Quantification of retinal fluids is necessary for OCT-guided treatment management.
New convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation.
Model benefits from hierarchical representation learning of textural, contextual, and edge features.
arXiv Detail & Related papers (2022-09-26T07:18:00Z) - A new perspective on probabilistic image modeling [92.89846887298852]
We present a new probabilistic approach for image modeling capable of density estimation, sampling and tractable inference.
DCGMMs can be trained end-to-end by SGD from random initial conditions, much like CNNs.
We show that DCGMMs compare favorably to several recent PC and SPN models in terms of inference, classification and sampling.
arXiv Detail & Related papers (2022-03-21T14:53:57Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots.
Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images.
arXiv Detail & Related papers (2020-11-12T08:17:21Z) - Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference [55.35176938713946]
We develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network.
We propose a Weibull upward-downward variational encoder that deterministically propagates information upward via a deep neural network, followed by a downward generative model.
The efficacy and scalability of our models are demonstrated on both unsupervised and supervised learning tasks on big corpora.
arXiv Detail & Related papers (2020-06-15T22:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.