Low Crosstalk in a Scalable Superconducting Quantum Lattice
- URL: http://arxiv.org/abs/2505.22276v1
- Date: Wed, 28 May 2025 12:07:51 GMT
- Title: Low Crosstalk in a Scalable Superconducting Quantum Lattice
- Authors: Mohammed Alghadeer, Shuxiang Cao, Simone D Fasciati, Michele Piscitelli, Paul C. Gow, James C. Gates, Mustafa Bakr, Peter J. Leek,
- Abstract summary: Superconducting quantum circuits are a key platform for advancing quantum information processing and simulation.<n>We demonstrate a scalable 4x4 square lattice with low crosstalk, comprising 16 fixed-frequency transmon qubits with nearest-neighbor capacitive coupling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superconducting quantum circuits are a key platform for advancing quantum information processing and simulation. Scaling efforts currently encounter challenges such as Josephson-junction fabrication yield, design frequency targeting, and crosstalk arising both from spurious microwave modes and intrinsic interactions between qubits. We demonstrate a scalable 4x4 square lattice with low crosstalk, comprising 16 fixed-frequency transmon qubits with nearest-neighbor capacitive coupling that is implemented in a tileable, 3D-integrated circuit architecture with off-chip inductive shunting to mitigate spurious enclosure modes. We report on the design and comprehensive characterization, and show that our implementation achieves targeted device parameters with very low frequency spreads and simultaneous single-qubit gate errors across the device. Our results provide a promising pathway toward a scalable, low-crosstalk superconducting lattice topology with high qubit connectivity for quantum error correction and simulation.
Related papers
- High-contrast interaction between remote superconducting qubits mediated by multimode cable coupling [1.5728609542259502]
We show that a multimode coaxial cable can mediate high-contrast interaction between spatially separated qubits.<n>We can implement high-fidelity controlled-Z and ZZ-free iSWAP gates by simply modulating qubit frequencies.
arXiv Detail & Related papers (2025-05-13T14:23:04Z) - Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers [63.42120407991982]
Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors.<n>We present a design for a multi-chip module comprising one carrier chip and four qubit modules.<n>Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 times 10-3$ in 200 ns.<n>We demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 times 10-3$ extracted from interleaved randomized benchmarking.
arXiv Detail & Related papers (2025-03-16T18:32:44Z) - Signal crosstalk in a flip-chip quantum processor [2.7122314353236483]
We demonstrate packaged flip-chip superconducting quantum processors with signal-crosstalk performance competitive with those reported in other platforms.
For capacitively coupled qubit-drive lines, we find on-resonant crosstalk better than -27 dB (average -37 dB)
We discuss the implication of our results for the design of a low-crosstalk, on-chip signal delivery architecture.
arXiv Detail & Related papers (2024-03-01T05:05:37Z) - Mitigating crosstalk errors by randomized compiling: Simulation of the
BCS model on a superconducting quantum computer [41.94295877935867]
Crosstalk errors, stemming from CNOT two-qubit gates, are a crucial source of errors on numerous quantum computing platforms.
We develop and apply an extension of the randomized compiling protocol that includes a special treatment of neighboring qubits.
Our twirling of neighboring qubits is shown to dramatically improve the noise estimation protocol without the need to add new qubits or circuits.
arXiv Detail & Related papers (2023-05-03T18:00:02Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Circuit connectivity boosts by quantum-classical-quantum interfaces [0.4194295877935867]
High-connectivity circuits are a major roadblock for current quantum hardware.
We propose a hybrid classical-quantum algorithm to simulate such circuits without swap-gate ladders.
We numerically show the efficacy of our method for a Bell-state circuit for two increasingly distant qubits.
arXiv Detail & Related papers (2022-03-09T19:00:02Z) - Scalable High-Performance Fluxonium Quantum Processor [0.0]
We propose a superconducting quantum information processor based on compact high-coherence fluxoniums with suppressed crosstalk.
We numerically investigate the cross resonance controlled-NOT and the differential AC-Stark controlled-Z operations, revealing low gate error for qubit-qubit detuning bandwidth of up to 1 GHz.
arXiv Detail & Related papers (2022-01-23T21:49:04Z) - Quantum crosstalk analysis for simultaneous gate operations on
superconducting qubits [12.776712619117092]
We study the impact of quantum crosstalk on simultaneous gate operations in a qubit architecture.
Our analysis shows that for microwave-driven single-qubit gates, the dressing from the qubit-qubit coupling can cause non-negligible cross-driving errors.
arXiv Detail & Related papers (2021-10-25T01:21:04Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.