Rethinking the Unsolvable: When In-Context Search Meets Test-Time Scaling
- URL: http://arxiv.org/abs/2505.22290v1
- Date: Wed, 28 May 2025 12:28:18 GMT
- Title: Rethinking the Unsolvable: When In-Context Search Meets Test-Time Scaling
- Authors: Fanzeng Xia, Yidong Luo, Tinko Sebastian Bartels, Yaqi Xu, Tongxin Li,
- Abstract summary: In this paper, we explore the combined potential of in-context search and test-time scaling on super hard reasoning tasks.<n>We find that by employing advanced in-context search prompting to LLMs augmented with internal scaling, one can achieve transformative performance breakthroughs.
- Score: 1.219841051166348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has highlighted that Large Language Models (LLMs), even when trained to generate extended long reasoning steps, still face significant challenges on hard reasoning problems. However, much of the existing literature relies on direct prompting with simple in-context learning examples for evaluation, which largely overlooks advanced techniques to elicit LLMs' deliberate reasoning before drawing conclusions that LLMs hit a performance ceiling. In this paper, we systematically explore the combined potential of in-context search and test-time scaling on super hard reasoning tasks. We find that by employing advanced in-context search prompting to LLMs augmented with internal scaling, one can achieve transformative performance breakthroughs on tasks previously deemed "unsolvable" (e.g., reported success rates below 5%). We provide both empirical results and theoretical analysis of how this combination can unleash LLM reasoning capabilities: i) Empirically, on controlled NP-hard tasks and complex real-world planning benchmarks, our approach achieves up to a 30x improvement in success rates compared to previously reported results without any external mechanisms; ii) Theoretically, we show that in-context search prompting, when combined with internal scaling, significantly extends the complexity class of solvable reasoning problems. These findings challenge prevailing assumptions about the limitations of LLMs on complex tasks, indicating that current evaluation paradigms systematically underestimate their true potential. Our work calls for a critical reassessment of how LLM reasoning is benchmarked and a more robust evaluation strategy that fully captures the true capabilities of contemporary LLMs, which can lead to a better understanding of their operational reasoning boundaries in real-world deployments.
Related papers
- Truly Assessing Fluid Intelligence of Large Language Models through Dynamic Reasoning Evaluation [75.26829371493189]
Large language models (LLMs) have demonstrated impressive reasoning capacities that mirror human-like thinking.<n>Existing reasoning benchmarks either focus on domain-specific knowledge (crystallized intelligence) or lack interpretability.<n>We propose DRE-Bench, a dynamic reasoning evaluation benchmark grounded in a hierarchical cognitive framework.
arXiv Detail & Related papers (2025-06-03T09:01:08Z) - Reasoning LLMs are Wandering Solution Explorers [5.3795217858078805]
This paper formalizes what constitutes systematic problem solving and identifies common failure modes that reveal reasoning LLMs to be wanderers rather than systematic explorers.<n>Our findings suggest that current models' performance can appear to be competent on simple tasks yet degrade sharply as complexity increases.
arXiv Detail & Related papers (2025-05-26T17:59:53Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
Large Language Models (LLMs) display sophisticated reasoning abilities via extended Chain-of-Thought (CoT) generation.<n>RLMs often demonstrate counterintuitive and unstable behaviors, such as performance degradation under few-shot prompting.<n>We introduce a unified graph-based analytical framework for better modeling the reasoning processes of RLMs.
arXiv Detail & Related papers (2025-05-20T03:54:57Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models [25.029579061612456]
Large Language Models (LLMs) are increasingly being employed in real-world applications in critical domains such as healthcare.
It is important to ensure that the Chain-of-Thought (CoT) reasoning generated by these models faithfully captures their underlying behavior.
arXiv Detail & Related papers (2024-06-15T13:16:44Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
Large language models (LLMs) have revolutionized many areas by achieving state-of-the-art performance on downstream tasks.
Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems.
arXiv Detail & Related papers (2024-01-17T08:22:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.