Does Johnny Get the Message? Evaluating Cybersecurity Notifications for Everyday Users
- URL: http://arxiv.org/abs/2505.22435v1
- Date: Wed, 28 May 2025 14:58:29 GMT
- Title: Does Johnny Get the Message? Evaluating Cybersecurity Notifications for Everyday Users
- Authors: Victor Jüttner, Erik Buchmann,
- Abstract summary: Recent approaches use large language models to rewrite brief, technical security alerts into intuitive language.<n>It remains an open question how well such alerts are explained to users.<n>In this work, we introduce the Human-Centered Security Alert Evaluation Framework (HCSAEF)
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Due to the increasing presence of networked devices in everyday life, not only cybersecurity specialists but also end users benefit from security applications such as firewalls, vulnerability scanners, and intrusion detection systems. Recent approaches use large language models (LLMs) to rewrite brief, technical security alerts into intuitive language and suggest actionable measures, helping everyday users understand and respond appropriately to security risks. However, it remains an open question how well such alerts are explained to users. LLM outputs can also be hallucinated, inconsistent, or misleading. In this work, we introduce the Human-Centered Security Alert Evaluation Framework (HCSAEF). HCSAEF assesses LLM-generated cybersecurity notifications to support researchers who want to compare notifications generated for everyday users, improve them, or analyze the capabilities of different LLMs in explaining cybersecurity issues. We demonstrate HCSAEF through three use cases, which allow us to quantify the impact of prompt design, model selection, and output consistency. Our findings indicate that HCSAEF effectively differentiates generated notifications along dimensions such as intuitiveness, urgency, and correctness.
Related papers
- ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning [49.47193675702453]
Large Language Models (LLMs) have demonstrated remarkable generative capabilities.<n>LLMs remain vulnerable to malicious instructions that can bypass safety constraints.<n>We propose a reasoning-based safety alignment framework, ARMOR, that replaces the ad-hoc chains of thought reasoning process with human-aligned, structured one.
arXiv Detail & Related papers (2025-07-14T09:05:54Z) - Defeating Prompt Injections by Design [79.00910871948787]
CaMeL is a robust defense that creates a protective system layer around the Large Language Models (LLMs)<n>To operate, CaMeL explicitly extracts the control and data flows from the (trusted) query.<n>We demonstrate effectiveness of CaMeL by solving $67%$ of tasks with provable security in AgentDojo [NeurIPS 2024], a recent agentic security benchmark.
arXiv Detail & Related papers (2025-03-24T15:54:10Z) - Do LLMs Consider Security? An Empirical Study on Responses to Programming Questions [10.69738882390809]
ChatGPT can volunteer context-specific information to developers, promoting safe coding practices.<n>We evaluate the degree of security awareness exhibited by three prominent LLMs: Claude 3, GPT-4, and Llama 3.<n>Our findings show that all three models struggle to accurately detect and warn users about vulnerabilities, achieving a detection rate of only 12.6% to 40% across our datasets.
arXiv Detail & Related papers (2025-02-20T02:20:06Z) - Human-Readable Adversarial Prompts: An Investigation into LLM Vulnerabilities Using Situational Context [45.821481786228226]
We show that situation-driven adversarial full-prompts that leverage situational context are effective but much harder to detect.<n>We developed attacks that use movie scripts as situational contextual frameworks.<n>We enhanced the AdvPrompter framework with p-nucleus sampling to generate diverse human-readable adversarial texts.
arXiv Detail & Related papers (2024-12-20T21:43:52Z) - ChatNVD: Advancing Cybersecurity Vulnerability Assessment with Large Language Models [0.46873264197900916]
ChatNVD is a support tool powered by Large Language Models (LLMs) to generate accessible, context-rich summaries of software vulnerabilities.<n>We develop three variants of ChatNVD, utilizing three prominent LLMs: GPT-4o Mini by OpenAI, LLaMA 3 by Meta, and Gemini 1.5 Pro by Google.<n>Our results demonstrate that GPT-4o Mini outperforms the other models, achieving over 92% accuracy and the lowest error rates.
arXiv Detail & Related papers (2024-12-06T03:45:49Z) - LLMs know their vulnerabilities: Uncover Safety Gaps through Natural Distribution Shifts [88.96201324719205]
Safety concerns in large language models (LLMs) have gained significant attention due to their exposure to potentially harmful data during pre-training.<n>We identify a new safety vulnerability in LLMs, where seemingly benign prompts, semantically related to harmful content, can bypass safety mechanisms.<n>We introduce a novel attack method, textitActorBreaker, which identifies actors related to toxic prompts within pre-training distribution.
arXiv Detail & Related papers (2024-10-14T16:41:49Z) - LLM Safeguard is a Double-Edged Sword: Exploiting False Positives for Denial-of-Service Attacks [7.013820690538764]
We study attacks that exploit the emphfalse negatives of safeguard methods.<n>The malicious attackers could also exploit false positives of safeguards, leading to a denial-of-service (DoS) affecting users.
arXiv Detail & Related papers (2024-10-03T19:07:53Z) - The potential of LLM-generated reports in DevSecOps [3.4888132404740797]
Alert fatigue is a common issue faced by software teams using the DevSecOps paradigm.
This paper explores the potential of LLMs in generating actionable security reports.
Integrating these reports into DevSecOps can mitigate attention saturation and alert fatigue.
arXiv Detail & Related papers (2024-10-02T18:01:12Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
We conduct a comprehensive review of the literature on the application of Large Language Models in cybersecurity (LLM4Security)<n>We observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection.<n>Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training.
arXiv Detail & Related papers (2024-05-08T02:09:17Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction.
Inspired by these findings, we propose a method for safety prompt optimization, namely DRO.
Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries' representations along or opposite the refusal direction, depending on their harmfulness.
arXiv Detail & Related papers (2024-01-31T17:28:24Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.